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ABSTRACT. — A Lipschitz embedding of a metric space (X,d) into another one
(Y,0) isamap f: X — Y such that

JA, B €]0,+oc0], Vz,z' € X, Ad(z,z") <5(f(2), f(z')) < Bd(z,z").

We describe here three methods to obtain Lipschitz embeddings of the metric space
(R®, || |I?) into some metric space (R™, || ||).

The third method allows us to minimise, for £ = 1, the rank of such an embedding
(i.e. to obtain the minimal value of the integer n).

Introduction

Let (X,d) and (Y,8) be two metric spaces. A map f : X — Y is called
a Lipschitz embedding of (X,d) into (Y,8) if there exist two numbers A, B €
10, +00[ such that we have

Ad(z,2') <8(f(x), f(2')) < Bd(,2)

for any x,2’ € X (if we want to be more precise, we say that f is an (A, B)-
Lipschitz embedding of (X, d) into (Y,5)).

In this regard, several questions seem interesting to me:

— how to recognise if there exists, for a given metric space (X, d), an integer
n and a Lipschitz embedding of (X, d) into (R™, || ||)?

— if it is the case, to calculate the rank of (X, d) (i.e. to minimise n);

— to study how, as n increases to +o0o, the distortion of (X,d) in (R™, | |
decreases (that is to say, the lower bound of log %) of all Lipschitz embeddings
of (X,d) into (R™,]| |))-

In the present work, we will study in particular the metric space (R¥, || ||?)
from this point of view:

(a) we will describe three methods of embedding (R”, || ||P) into (R™, || |):

— the first method (very simple, but which does not give a good evaluation
of the rank nor the distortion) can, in particular, be carried out using lacunary
series or Schauder basis;
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— the second method, which generalises the preceding one, allows the em-
bedding of the space (X, dP) into a space (R™, ]| |), for any number p €]0, 1], for
every metric space (X, d) of finite metric dimension (these spaces are studied
notably in [1]);

— the third method uses generalised KOCH curves (in fact this method ex-
tends the observation, due to GLAESER [5] p.57, that the classical curve of H.

VON KocH [7] realises a Lipschitz embedding of the space ([0, 1], | ||~°83/Los4)
into (R, | ).

(b) We show that this third method allows us, at least for k¥ = 1, to obtain
the exact value of the rank of the space ([0, 1]*, | [|P).

So here is how this work is divided:

Section 1 SCHAUDER basis and lacunary series.
Section 2 Metric dimension and embedding.
Section 3 Generalised KOCH curves.

Section 4 Rank of the space ([0, 1]%,| ||).
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Notations

— Let k > 1 be an integer; we always denote by || || the Euclidean norm on
RE.

— Let p €]0,1[; if T is a subset of the Euclidean space (E,|| ||), we denote
by (T, ||P) the set T' equipped with the distance s,t — ||s — ¢||P

(this is really to do with a metric space, not a normed space).

—Let b €]0, +00]; a subset T' of a metric space (X, d) is said to be b-separated
(resp. of diameter < b) if we have d(s,t) > b (resp. d(s,t) < b) for every pair
(s,t) of distinct points of T'.

— Let x and y be two real numbers; we then write:

x Ay for Inf(x, y), x V y for Sup(z,y), and x* for Sup(z,0).

1 Schauder basis and lacunary series

We are first going to describe quite a general construction (it can be carried
out using Schauder basis or lacunary series, as we will see in the following; it
can equally be applied to Section 2):

1.1. (a) Let @ be a map from a space (X, d) into a Hilbert space (E, || ||), and
let T €]0,1[ and A, B, ¢ €]0,4o00[; we say that ¢ is a local (1, A, B, ¢)-controlled
embedding of (X,d) into (E,| ||) if it satisfies the following conditions for all
r,t € X:

(al) te < d(s,t) < ¢ implies ||@(s) — @(t)] > A4;

(a2) o(s) — @(t)]| < B(d(s,t) A 1);

(b) let (vj)jez be a sequence, periodic with period 2N, of elements of a
Euclidean space; we say that (v;);jez is a cyclic base of (F\, || ||) if (vi, ..., van)
is an orthonormal basis of (F, || |)-



1.2. PROPOSITION. — Let T,p €]0,1[ and A, B,c €]0,+00[. Let (X,d) be a
metric space with a designated 0 element, and let (E, || ||) be a Hilbert space.

For every j € Z, take a local (T, A, B, ¢)-controlled embedding @; such that
©;(0) =0, of the space (X,t=7d) into (E,|| ||). Also take a cyclic basis (v;);ez
of a Euclidean space (F,|| ||) of dimension 2N.

For every s € X, we let f(s) =3 ez TP;(s) ®vj. Then we have
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In particular, the map f is a szschztz embeddmg of (X,dP) into (EQF.| |),

as soon as N is sufficiently large to have 4 T — ClN(Tl ~ (EQF is equipped
with the tensor product of the Hilbert structures of E and F).

Proof. — For each j € Z, we denote by f; the map s — 1P ¢,(s) ® v;. We have
£(0) = 0; for the upper bound of ||f(s) — f(¢)|| that we propose to establish,
it will thus suffice to show the convergence of the series f = > jez fj- Let
(s,t) be a pair of distinct points of X, and let I be a natural number such that
T < Ld(s,t) < 7

(a) (Upper bound). We then have:
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(b) (Lower bound). We also have:
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Let us expound upon the preceding Proposition a little:

1.3. (a) If E is of dimension M, we have obtained a Lipschitz embedding of
the space (X,dP) into (R2VM || |); but 2N M is not a good evaluation of the
rank of the space (X, dP), as we will see in Section 4.

(b) We can note that the above construction does not work well as p tends
to 1 (even when the embedding is trivial for p = 1).

(c) Let m € Z; if T is a subset of diameter < ¢t™ of the space (X, d), then
the map s — ) Sm TP @;(s) @ v; is a Lipschitz embedding of the space (T, dP)
into (E® F, || ||3, as long as N is sufficiently large.

(d) Let m € Z; if T is a ct™-separated subset of the space (X, d), then the
map s — > .., TP@;(s) ®v; is a Lipschitz embedding of the space (T, dP) into
(E®F,| |), as long as N is sufficiently large ((¢) and (d) can be shown exactly
as Proposition 1.2, but taking into account the values that [ can take).

1.4. COROLLARY. — Let T,p €]0,1[ and A, B,c €]0,+o0c[. Let ¢ be a local
(1, A, B, ¢)-controlled embedding of RF into a Euclidean space (E,|| ||) and let
(vj)jez be a cyclic base of a Euclidean space (E, | ||) of dimension 2N .

For each s € R¥, we let f(s) = > jez UP@(tIs)@v;. Then f is a Lipschitz
embedding of (R*, || ||P) into (E® F,|| ||), as long as N is sufficiently large.

Proof. —Indeed, for each j € Z, the map ¢@; : s = @(t77s) is alocal (1, 4, B, ¢)-
controlled embedding of the space (R* 17| ||) into (E,| |)). O

Let us describe some examples of local embeddings of R into a Euclidean
space:

(1.5) Let us fix T €]0, 1] and take E = C (considered as a Euclidean space of
dimension 2 on R). The function ¢ : s — exp(is) — 1 is then a local (7, 4,2, ¢)-

. . . 21
controlled embedding of R in C (by taking, for example, ¢ = 177 and A =
[@(cT)]).

In particular, we can then embed ([0,1],]| ||P) into a Euclidean space using

a lacunary Fourier series with appropriate vectorial coefficients.

(1.6) Let us fix T €]0, 1] and take E = R? @ R? (the canonical base of R? will
be denoted by (e1,ez)). For each j € Z and each z € D; = 2777, we denote by
A; , the functions s — (1—[1+27T1(z—s)|)* (Schauder basis). Let A € R\{0};
the function

QN = Z e1 ® (1o, + A2y /) + Z ex ® (e1o,r + A2y, /2)

T even r odd

is then a local (1, A, B, ¢)-controlled embedding of R into E, for appropriate
values of A, B and ¢ (because @) is injective, bounded, Lipschitz and periodic
on every interval of width < 1).

1.7. COROLLARY. — In particular, let us take T = % and A\ = 27P. The
embedding f of (R, || ||P) into a Euclidean space constructed using the local em-
bedding @ can be written as f = 3., ZzeDj 27Puf; . @ VA ., where the
sequence (V})jez (resp. for each j € Z, the sequence r — u; ro—i) 8 a cyclic
basis of a Fuclidean space F' (resp. E') of appropriate dimension.



Proof. — For each j € Z, we let vy, = e1 ® v; and vy; | = ez ® vj; moreover,
for each z € Dy, we let ), = ey if 227 is even, and v, = ey otherwise. The
sequence (v});ez is thus a cyclic basis of F' = R? ® F'; moreover, for each j € Z,
the sequence r — u;.ﬂ,j is a cyclic basis of B/ = R2.

We immediately have that the embedding f is of the form announced in the
statement. O

We will see in the next Section that the embedding process described in (1.2)
can be applied to quite general metric spaces.

2 DMetric dimension and embedding

2.1. we say that a metric space (X,d) is (C,s)-homogeneous if we have
Ynz <C (g) for any a,b €]0, +00[ (a < b) and for any a-separated Y (resp.
Z of diameter < b) in the space (X, d). The metric dimension of (X, d) (which
is denoted as Dim(X, d)) is the infimum of real numbers s > 0 such that, for a
certain C €]0, +o00], the space (X, d) is (C, s)-homogeneous.

This notion of metric dimension (there are others) is old, since it goes back
to an article of G. BOULIGAND [3] (1928). The results which will follow are
more recent, and appear in my thesis [1] (1977).

2.2. (a) the metric dimension of (R™,]| ||) is equal to n (for any n € N);
(b) the metric dimension of (X, d?) is equal to %Dirn(X7 d) (for any p €]0, 1]);
(c) if f is a Lipschitz embedding of (X, d) into (Y, §), we then have Dim(X, d) <

Dim(Y, ).
It follows from (a) and (c) that, if (X, d) admits a Lipschitz embedding into
a space (R™,|| ||), then the space (X, dP) is of finite metric dimension for any

p €]0, 1[. We propose to establish a converse of sort to this observation. We will
need two Lemmas.

2.3. Let (X, d) be a metric space, b > 0 a real number and M > 2 an integer;
we define an (M, b)-colouring of (X, d) as any map k : X — {1, ..., M} such that
d(s,s") < b implies k(s) # k(s'), for all 5,8’ € X (s # §').

As we know (BROOKS [4]), every graph of degree < M possesses an M-
colouring. This can be reformulated as follows:

2.4. LEMMA — Let (X, d) be a metric space, b > 0 a real number and M > 2
an integer. Assume that we have |{x € X | d(x,s) < b} < M, for all s € X.
Then the space (X,d) admits an (M,b)-colouring.

Proof. — We equip X with a well-ordering by identifying it with the set of
ordinals of cardinality < Card(X); for each @ € X, we set Xo = {f € X |0 <
B < of.

(a) Let us fix o € X and suppose that an (M, b)-colouring ky of (X«,d) is
defined; let V be the set of values taken by ky on {B € X« | d(B, ) < b}; we can
choose an element m of {1,..., M}\V; we can then define an (M, b)-colouring
kat1 of (Xa+1,d) extending ky by letting kqr1(o) = m.

(b) This allows us to define inductively, for each o« € X, an (M, b)-colouring
ks of (X«,d) such that ky extends kg, for any o € X and f € X4.

The map k : X — {1, ..., M} which extends each of the k4 is then an (M, b)-
colouring of (X, d). O



2.5 LEMMA. — Let (X,d) be a metric space, Y a l-network of (X,d) (that
is to say, a maximal 1-separated subset), b > 8 a real number and M > 2 an
integer.

We denote by (e, ...,ens) the canonical basis of RM. Let k be an (M, b)-
colouring of (Y,d). Then the map @ : s — Zer(Q —d(s,y)) T ex(y) is a local
(1, A, B, ¢)-controlled embedding of (X,d) into (RM,|| ||), forc=b—4, 1=1,
A=+/2 and B=4M.

Proof. For each y € Y, we denote by A, the map s — (2 —d(s,y))*.

For each s € X, welet Bs={y €Y | Ay (s) #0}.

(a) Let s,t € X with 4 < d(s,t) < b— 4. Then the sets By and B; are
disjoint and the colouring k is injective on Bs; U B;. We then have:

lo(s) = @()[* = Sup{Aj(s) + AZ(t) | y € By, 2 € By} > 2.

(b) Let s,t € X. For each y € Y, we have |Ay(s) — Ay(t)] < 2(d(s,t) A 1).
But we have |Bs; U B| < 2M (because k is injective on Bs and on B;). So
we have

lo(s) =@l < Y 18y(s) = Ay ()] < 4M(d(s,t) A 1).

We now arrive at the result that we had as our goal:

2.6. PROPOSITION. — Let (X, d) be a metric space of finite metric dimension
and let p €]0,1[. Then there exists an integer n > 0 and a Lipschitz embedding
of the space (X, dP) into the Fuclidean space (R™, || ||).

Proof. — (a) We choose C' €]0, +o0[ and s €]0, +oo[ such that the space (X, d)
4

is (C, s)-homogeneous. Let T be an element of ]0,1[; we let ¢ = =, b = c+ 4,
A =1+/2, M = C(2b)* and B = 4M. Finally, we distinguish a point 0 in X.

(b) Let us fix j € Z. The space (X, T 7d) is also (C, s)-homogeneous. Let
Y, be a l-network of (X, t77d); we then have [{y € Y; | t7d(y,z) < b}| < M,
for any z € Y;. The space (Yj, 7 7d) thus admits an (M, d)-colouring (see 2.4)
and so there exists a local (T, A, B, c)-controlled embedding @; of the space
(X,777d) into the Euclidean space (RM,| ||) (see 2.5). By replacing ¢; by
@; — @;(0) if necessary, we can even assume that ¢; vanishes at 0.

(¢) We have thus obtained, for each j € Z, a local (7, A, B, ¢)-controlled
embedding ¢; of (X,t77d) into (RM,]|| ||) that vanishes at 0. Let (v;)jez be a
cyclic base of a Euclidean space (F, || ||). If the dimension of F' is large enough,
then the map f:s — ZjeZ P @;(s) ®v; is a Lipschitz embedding of the space

(X, dP) into the Euclidean space (RM @ F,|| ||) (see 1.2). O

3 Generalised Koch curves
Our construction generalises, as we will see, that of the classical Koch curve
[7]; it is what justifies our terminology.

3.1. Let [ > 2 be an integer, n an element of ]0, 1[, 1 an element of [0, 7t[, K
a compact subset of R™ and ag and a; two distinct points in K.



We define a Koch chain with length 1, scale n, flexibility < 1 and mesh
(a0, K, a;) in R™ as any family T = (Tp, ..., Tj—1) of isometries of the Euclidean
space satisfying the following properties:

(a) For each r = 1,...,1 — 1, the set n7T;.(K) (denoted K,) is contained in K;

(b) we have NTp(ag) = ap and NT;_1(a;) = ay;

(c) for each r = 1,...,1 — 1, the point NT,(ag) (denoted a,) is equal to
T]Tr—l(al);

(d) for each r =1,...,1 — 1, we have

(z—ar [y —a)+ |z —ar|lly — ar| cosp <O,

for any z € K,_; and y € K,;
(e) K, and K, are disjoint, for any r,r’ € {0,...,1 — 1} with |r — /| > 2.

The sequence (ag, Ko, a1, K1, ...,a;—1, Kj—1, a;) is called the support, the points
ag, ..., a; the vertices and the sets Ky, ..., K;_1 the links of the chain T.
Each Koch chain will allow the following construction:

3.2. Let T = (To,...,T;—1) be a Koch chain of length I, scale n, flexibility
< ¥ and mesh (ag, K, a;) in R™.

(a) For each integer j > 1, we denote by Dé» the set of real numbers t of
the form ¢ = Y7_, 7;0=% with rq,79,...,7; € {0,...,1 — 1}. We denote by D' the
union of the sets Dév (for j > 1). For each r =0, ...,1 — 1, we set S, =n7T,.

(b) For each integer j > 1 and each element ¢ = 25:1 ril =% of Dé- (with
1,075 €40,..,1 = 1}), we set f;(t) = Sy, Sr,...S, (ag).

(¢) For each pair of integers j, k (with j < k), the map f; obviously extends
the map f; (since we have Sy(ag) = ao, see 3.1b); we denote by fr the map
from D! into R™ which is equal to f; on Dé, for any integer j > 1; the set
Yr = fT(Di) is then called generalised Koch curve with respect to the chain T

There is an abuse of terminology in calling yr a curve; but we are going
to show that the closure of yr is effectively a curve, and, more precisely, that
the continuous extension of fr to [0,1] is, for a certain p €]0,1[, a Lipschitz
embedding of ([0,1], ] ||”) into (R™, || ||).

Before showing this, let us describe some examples of Koch chains:

3.3. Let us identify the Euclidean space (R? | ||) with C, and let us fix
0 €]0,5[; we set ap = 1 + e® a; = 0, ay = —ap and we denote by K the
triangle with vertices ag, a; and as, by K the triangle with vertices ag, ag — 1
and aq, and by K; the triangle with vertices a1, a2 + 1 and as. Clearly, there
exists a Koch chain and a unique mesh (ag, K, a2) and having the sequence
(a0, Ko, a1, K1, as) as its support; it is the chain T of length 2, scale (2 cos g)’l
and flexibility < 20 in R2.

(a) In particular, for 6 = 3, the curve yr is the set of points with dyadic
parameter of the classical Koch curve (see [7]).

(b) For 8 = 7 (which we had not allowed ourselves), the flexibility would no
longer be bounded and yr would be the set of points with dyadic parameter of
a Peano curve which fills K.

We are going to construct quite a large class of Koch chains:

3.4. Let n > 1 be an integer and (e, ..., e,) the canonical basis of R™.
(a) Let 6 €]0, Z[; we set S(0) = {x € R" | ||z|| = tg0, (x | e1) = 0}; and we
denote by D(6) the convex hull of S(08) U {e1, —e; }.



(b) We say that two points  and y in Z" are adjacent if we have ||z —y|| = 1.

(¢) Let X be a subset of Z™. A sequence y = (zg, ..., x;) of distinct points of
X is called a path of length | joining xq¢ to x; in X if z,_1 and x, are adjacent,
for any r =1, ...,1.

3.5 LEMMA. — Let kq, ..., k, = 0 integers. We set

n

X = H{O, ey 2k;} and a = 2ikiei.

=1 =1

Then there exists a path v of length 2l joining 0 to a in X, for any integer [
satisfying iy ki <1< 3[miy (2k; + 1) — 1].

Proof. (Induction on Y ; k;). — Let ki, ..., k, = 0 be integers and let us sup-
pose that the result is shown for every ki, ...k}, with > i kl < >1" k.

(a) We will assume k; > 1 (by permuting the coordinates if necessary) and
set mo = Z?:2 ki, M2 = %[H7:2(2k7, + 1) - ].], mip = Mo + kl - ]., M1 =
1[(2M3 + 1)(2k; — 1) — 1] and finally m = my + 1, M = My + 2Ms + 1. We
denote by X7 (resp. X, resp. X3) the set of points  of X such that (z | e1) is
less than or equal to 2k; — 2 (resp. is equal to 2k; — 1, resp. is equal to 2kq).

(b) Let I be an integer satisfying m < I < M; so there exist integers I; and
lo with my <13 < My, 0<1ls < My and I =1; +2l3 + 1. So there exist (by the
induction hypothesis) a path y; of length 2I; joining 0 and a; = a — 2e; in X7,
a point by in Xo and a path ys of length 2[5 joining as = a — e and by in Xo;
so there also exists a path y3 of length 2[5 joining b3 = by +e; and a in X3. Let
v be the path obtained by joining the paths v1, (a1, az2), y2, (b2, bs) and ys; it
is the path of length 2/ that we were looking for. O

3.6. PROPOSITION. — Let p be an element of 10,1[, n an integer strictly
larger than % and P an element of]%“,ﬂ[, Then there exists an integer | > 2

and a Koch chain of length 1, scale [™P and flexibility < in R™.

Proof. (a) We take 6 = % — %. We choose a real number $ > 0 such that
the cube [—2f,2B]™ is contained in %D(G). We choose an even integer [ > 2
satisfying 2n(1+ )P <1 < p™IP™ —1 (this is possible because we have p < 1 <
pn).
We set 1 =17P and we denote by N the integer part of 31P.

(b) We set b= N7 e;, K = 5-D(6), ap = yer and X = {=N,..., N},
A sequence v = (Yo, ..., Yq) of distinct points of a subset ¥ of K will be called
here a trail of length q joining yo and yq in Y if yo, ..., y4 are consecutive vertices
of a Koch chain of scale 1, flexibility < { and mesh (ag, K, —ay).

(c) Let

Yr={zeK|(z|e1) = N+1}

and

Y ={zeK|(z]e)) <—(N+1)}
Clearly we can join ag and b’ = b+ e; by a trail y* of length r < »—1in y+
(it is for this that we took 1 > 27). Likewise we can join —b' and —ag by a
trail Yy~ of length r in Y~. The integer [ — 2r — 2 is thus even and satisfies

N <1—2r —2< (2N +1)" — 1.



So there exists (see Lemma 3.5) a path yq of length { — 2r — 2 joining b and
—b in X. Let v be the sequence obtained by joining the paths y*, (¥',b), vo,
(=b,—b'") and y; it is a trail of length [ joining ap and —ag in K, which proves
the Proposition. L]

Having obtained some examples of Koch chains, we are now going to show
that each chain of length [ and scale {7 in R™ defines a Lipschitz embedding of
(10,11, ]| [I7) into (R", | ).

Here are some preliminary observations:

3.7. (a) Let T be a Koch chain of length [, scale n and mesh (ag, K, a;) in
R™. Let fr be the map from D! into R”™ which it defines (see 3.2). Then the
points fr(0), fr(3), ..., fr(5), a; are the vertices of the chain 7.

(b) Let k > 2 be an integer. Then the points

Fr(0), fr(U7F), fr(207F), . fr((1F = 1)17F),

a; are the vertices of a chain T'(k) of length I¥, scale n*, mesh (ag, K,a;) and
which satisfies fr () = fr (observe that we have D" = D).

(c) Let z,y € D' with |v — y| > 2; then fr(z) and fr(y) belong to non-
consecutive links of the chain T'(3) (because we have & > 217%).

(d) The quantity Ay = Inf{||fr(z) — fr(y)|| | |z —y| > %} is thus zero.
Furthermore, we denote by B; the diameter of K.

(e) Let s,t € D' (with s < t); let j € N such that ]s, [ do not contain any
element of D%. We set 57 = 1/(s — z) and #7 = I (t — z), where z is the largest

element of Dé» smaller than or equal to s. Then we have

If2(s) = fr O] = 77| fr(57) = fr(#)]| < Bl

If, moreover, we have [s — ¢| > 11=U+1_ then we also have || fr(s) — fr(t)|| >
AP

3.8. PROPOSITION. — Let p be an element of 10,1[ and let T = (Tp, ..., T1—1)
be a Koch chain of length 1, scale I7P, flexibility < and mesh (ag, K,a;) in
R™. Let fr be the map from D' into R™ which it defines (see 3.2).

Then fr is a Lipschitz embedding of (D, || ||P) into (R™,| ||). More pre-
cisely, let Ap and Br be the quantities defined in 3.6d: we then have

) T
Ale =y sin (93 3 ) < 1rle) ~ Fr)l < 281000 ol
for any z,y € D'.
Proof. — Let z,y € D! (with z < y) and let j > 0 be the integer satisfying

170D < |z —y| <177, We distinguish two cases:
(a) If ]2, y[ does not contain any element of D!, we have

Apl7? < | fr(2) = fr(y)l| < Brl™®
(see 3.6e) and so

Arle —y” < |fr(z) = fr(y)|| < Bri’lx —y[".



(b) Otherwise, ]z, y[ contains a unique element a of Dé»; by replacing T with

the reverse chain if necessary, we can assume that we have 21=0+1) < |z —q| <
[77 and |a — y| < 177; so we have

I#r0) = fr@llsin (v F ) < 1) = 1)
< (@) — F2 @+ 1fr(@) — Fo)]

(the first inequality comes from the fact that the chain T is of flexibility < 1;
see 3.1d); so we have Apl™Psin (O V ) < [|fr(z) — fr(y)|| < 2Bpl=97 (see
3.6e), which implies that

) T
Aafe = ypsin (v 5 ) < ) = )] < 2827l - P

4 Rank of the space ([0,1]%,] ||?)

4.1 (a) Let (X, d) be a metric space. We define the rank of (X, d) (denoted
by rg(X,d)) as the smallest integer n > 0 such that there exists a Lipschitz
embedding of (X, d) into the Euclidean space (R™, | ||).

(b) Let f be a Lipschitz embedding of (X, d) into the metric space (Y,0d);
we define the distortion of f (denoted by A(f)) as the lower bound of the real
numbers A such that there exists A €]0,+oo[ for which we have Ad(x,y) <
5(f(x), f(y)) < Aerd(x,y), for any z,y € X.

(¢) If n is an integer > rg(X, d), we define the n-distortion of (X, d) (denoted
by A, (X,d)) as the lower bound of A(f) over every Lipschitz embedding f of
(X,d) into the Euclidean space (R™, | ||)-

We will not try to evaluate the n-distortion of ([0,1]%,]| [|P) here; let us
however describe some questions that arise.

4.2 If (X,d) embeds isometrically, i.e. with distortion 0, into an infinite-
dimensional Hilbert space (which is the case for the space ([0, 1]%,| ||?)), then
we can expect that the n-distortion of (X, d) tends to 0 when n tends to +oc.
Thus Kahane [6] showed, in response to a question by the author, that the
n-distortion of ([0,1],+/] [|) is smaller than or equal to 0 ().

On the other hand, we are going to evaluate quite precisely the rank of
([0,1]%,|| ||?). Here are first some obvious preliminary remarks:

4.3 (a) Let d and & be two metrics on a set X. We assume that the identity
is a Lipschitz embedding of (X, d) into (X,0) (we say in this case that d and &
are Lipschitz equivalent). Then (X, d) and (X, 0) have the same rank.

(b) Let (X, d) and (Y, d) be two metric spaces. We equip X XY with the direct
sum metric d® b : (x,y), (2, y") = d(z, ")+ 5(y,y’). The rank of (X XY, d®§)
is then smaller than or equal to rg(X,d) + rg(Y, 6).

(c) Let (X, d) be a metric space. We then have Dim (X, d) < rg(X, d).

Let us now summarise the results obtained in Section 3:

4.4 PROPOSITION. — Let k > 1 be an integer and p an element of ]0,1[. Let
n be the smallest integer > %. Then the space ([0,1]%,|| ||P) is of rank < kn.
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Proof. — (a) We have shown, in 3.6, the existence of an integer [ > 2 and a
Koch chain of length [, scale [P and flexibility < %ﬂ in R™. As a result, there
exists (see 3.8) a Lipschitz embedding of (D!, || ||?) into (R™, || ||). Continuously
extending this embedding, we obtain a Lipschitz embedding of ([0, 1], || ||?) into
(R™, ]| 1I)- So the space ([0,1],]| ||?) is of rank < n.

(b) Let us denote by d (resp. ) the metric z,y — ||z — y||” on [0,1]* (resp.
on [0,1]). The metric d is Lipschitz equivalent to 6§ @ ... ® § (k times). The

remark 4.3b thus shows that ([0,1]%,]| ||P) is of rank < nk. O
4.5 As a result of 2.2, the metric dimension of ([0,1]%,| ||?) is equal to %.
Taking into account 4.3c, we see that ([0, 1],| ||P) is of rank > %.

The rank of ([0,1],]| ||?) (for p €]0,1[) is thus the smallest integer > %, if %
is not an integer. We propose to prove that this result remains true even if 1
is an integer (different from 1). More generally, we are going to establish that
([0, 7%, || |IP) is of rank > % for any integer k£ > 1 and p €]0,1[.

This will result from three lemmas.

4.6. (a) A symmetric kernel d : X2 —]0, +-00[ which is zero on and only on
the diagonal is called a pseudometric on X if there exists a number a € [1, +o0[
such that we have d(z,y) < a(d(z, z) + d(z,y)) for any z,y,z € X (when we
want to be more precise, we say that d is an a-pseudometric on X). We then
equip the space (X,d), which we call a pseudometric space, with the topology
generated by the “open” balls with respect to the pseudometric d.

(b) Let (X, d) be a pseudometric space; for each open subset U of (X, d), we
denote by T(U) the diameter of (U,d), i.e. the quantity Sup{d(u,v) | u,v € U}.
We then define an outer measure (g on X in the following way: for each subset
A of X and each € > 0, we set

Hae(A) = Inf{z T(U;) | (U;)ien covering of A by open sets of diameter < e}
€N

and
Ha(A) = Supesoha,e(A4)

(so the measure 4 is the outer measure on X obtained by Method II of Rogers
[8] p.27 from the pre-measure T).
We will say that pg is the Hausdorff measure on (X, d).

4.7 LEMMA — Let (X,d) and (Y,d) be two pseudometric spaces; let A, B €
10, +o0]. Let f be a map from X into Y satisfying Ad(x,x") < 8(f(z), f(z')) <
Bd(x,2") for any x,2’ € X. We then have Apg(X) < us(f(X)) < Bug(X).

Proof. When d and & are metrics, it is a particular case of Theorem 29 in [8].
Moreover, the proof of this theorem clearly remains valid (see [8] p.54) even if
d and & are not metrics. O

4.8 Every power of a metric is a pseudometric; in addition, we can show ([1]
Lemma 1.14) that every pseudometric is Lipschitz equivalent to a power of a
metric.

4.9 LEMMA. — Let (X,d) and (Y,d) be two metric spaces, xo a point in X
and yo a point in Y ; let A, B €]0, +oo[. We assume that the closed balls of (Y, )
are compact and that, for each finite subset F' of X containing xg, there exists
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an (A, B)-Lipschitz embedding gr of (F,d) into (Y,0) satisfying gr(zo) = yo-
Then there exists an (A, B)-Lipschitz embedding of (X, d) into (Y,5).

Proof. For each finite subset F' of X containing xg, we define a map fr from X
into Y by letting fr(z) = gr(x) if  belongs to F, and fp(x) = yo otherwise.
We then let f(z) = limp g fr(z) (for each x € X), where % is an ultrafilter
finer than the filter of inclusion on the set of every finite subsets of X containing
xo (we observe that fp(x) is, for any F', an element of the closed ball centred
at yo with radius Bd(z,x); it is the compactness of this ball which ensures the
existence of f(x)).

The map f is the embedding that we were looking for. O

4.10 Let ¢ €]0, +oo[. A subset T of a metric space (X, d) is said to be ¢-dense
in (X,d) if, for each z € X, there exists t € T with d(z,t) < e.

4.11. LEMMA. — Let F be an «-separated subset and G an e-dense sub-
set of a metric space (X,d). Then there exists a map h : F — G satisfying
(1—28) d(z,y) < 8(h(x), h(y)) < (1 + %) d(x,y) for any z,y € F.

Proof. As G is e-dense, we can choose, for each z € F, a point h(z) in G with
d(z,h(x)) < €. Let us fix z,y € F (with z # y); we then have:

d(h(z), h(y)) < d(z,y) + d(z, h(x)) + d(y, h(y))

2
<d(z,y) +2¢e < <1 + :) d(x,y)

and
d(w,y) < d(h(z), h(y)) + d(x, h(2)) + d(y, h(y))
< (), b)) + ().
Hence the map h is the map that we were looking for. O

Now, here is the result that we had in sight:

4.12. PROPOSITION. — Let k > 1 be an integer and p an element of |0, 1.
Denote by r(k,p) the rank of the metric space ([0,1],] ||P). We then have
m < r(k,p) < kn, where m is the smallest integer > %, and n the smallest

integer > %.
In particular, the rank of ([0,1],] [|P) is the smallest integer > %.

Proof. — (a) We have already shown the inequalities r(k,p) < kn (see 4.4) and
r(k,p) > % (see 4.5). Hence it remains to establish the inequality r(k,p) > %,

in the case where % is an integer.

(b) For that, we are going to assume that there exists an (A, B)-Lipschitz
embedding f of ([0,2]%,| ||P) into (R, | ||) (with % = ¢ € N) and show that
this leads to a contradiction; this will establish the Proposition.

(c) Let f be the embedding whose existence we assumed in (b). So we have
Al — yllF < () - ST < Bille — y||¥, for any o,y € [0,2)". Lemma
4.7 (applied to the pseudometrics d : z,y — ||z — y||* on [0,2]¥ and & : s,t —

s — ]| on RY) implies that the set f ([%, 3] k) has non-zero Lebesgue measure
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in R? and so possesses (by the Lebesgue differentiation theorem) a density point

to = f(.%‘o)
(d) For each B €0, 1[ and each z € [—1,1]", we set

f(x) =B P(f(xo+ Bx) — f(x0))-

For each  €]0, %[ the map fg thus defined is an (A, B)-Lipschitz embedding of
(I=1,1]%, || [[7) into (R, || ]) and we have:

B A(fp([-1,1]%) N S(0, A))
= A(f (2o + B[~1,1]¥) N S(to, ABP)) = A(f([0,2]¥) N S(to, ABP))

(where we denoted by A the Lebesgue measure on R? and by S(z,r) the closed
ball centred at z and with radius r in the space (R, | [)).

(e) As tg is a density point in f ([%, %] k), the inequality that we established

in (d) shows that we have

Jim A (=1, 11") N 5(0, 4)) = A(S(0, A)).

Hence, for each ¢ > 0, we can choose a number B(¢) €]0, [ such that G, =
fee)([=1,1]%) N 5(0, A) is e-dense in the space (5(0,A), || |)).

Moreover, g = f[;(lg) is a (%, % )-Lipschitz embedding of the space (G-, || ||)
into the space ([—1,1]%,| ||?).

(f) Let F be a finite subset of S(0, A) containing 0; so there exists &« > 0
such that F is a-separated in (S(0,A),|| ||). We fix e = §. So there exists (by
Lemma 4.11) a (3, 2)-Lipschitz embedding hr of (F,| ||) into (G, || [|), and
we can assume hp(0) = 0 (because 0 belongs to G¢). The map gr = g 0 hp
is thus a (35, 55 )-Lipschitz embedding of the space (F,| ||) into the space
([=1,10%, || ||?), and it satisfies gr(0) = 0.

(9) Hence there exists (by Lemma 4.9) a (55, 5% )-Lipschitz embedding of
the space (S(0, A4), || ||) into the space ([—1,1]%,| ||?), in contradiction with the
fact that the topological dimension of S(0,A) is equal to ¢ > k. This is the
contradiction that we were looking for. O

2B
|

The inequality r (1, %) > 2 could have been proved by using the following
result of Besicovitch and Schoenberg:

4.13. [2] Let f be a continuous and injective map from [0, 1] into R2. We
then have Inf{}"7_, || f(z;) — f(z;—1)|*} = 0. where the infimum is taken on all
the partitions 0 = zg < 1 < 22 < ... < zj_1 < z; = 1 of the segment [0, 1].

Likewise the inequality r (1, %) > ¢ could have been established by using

an extension (due to Y. Katznelson, not published) of 4.13 to Jordan curves
f:10,1] — RY, the g-variation then replacing the 2-variation.
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APPENDIX. A curve leading to an embedding of ([0,1], /] ||) into R3:

Let 0 = Arctg%; we consider a Koch chain T of length 144, scale 1—12, flexibility
< $+420 and mesh (ag, D(0), a144) in R3, whose support (ag, Ko, a1, ..., @143, K143, a144)

is given by the following diagram:

a
a, } 0
yl=[a3,...,a9] -
D(e) Yo={2ygs---12561]
............. y3=[a27.....a50]
PR tescacee y4=[a51.....a93]
............. YS'£°94"""117]
csssssessas YS'£‘118""“134J

--.-+.-.. Y7‘{a135'--'y31“1]

144
344

Y a Y2 Y3 % 'Yl:l‘ ]
Yq A A3 é ] Y7 [-li

A crude calculation (by hand) shows that there exists a real number A > 0

such that we have A+\/|s —t| < || fr(s) — fr(®)|| < 2184A/|s —t|, for any
s, t €10,1].

U,
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