Lipschitz Embeddings into \mathbb{R}^n

by

Patrice ASSOUAD (*)

Translated by Junhyung Park[1](#page-0-0)

ABSTRACT. – A Lipschitz embedding of a metric space (X, d) into another one (Y, δ) is a map $f : X \to Y$ such that

 $\exists A, B \in]0, +\infty[, \quad \forall x, x' \in X, \quad Ad(x, x') \leqslant \delta(f(x), f(x')) \leqslant Bd(x, x').$

We describe here three methods to obtain Lipschitz embeddings of the metric space $(\mathbb{R}^k, \| \| \|^{p})$ into some metric space $(\mathbb{R}^n, \| \| \|)$.

The third method allows us to minimise, for $k = 1$, the rank of such an embedding (i.e. to obtain the minimal value of the integer n).

Introduction

Let (X, d) and (Y, δ) be two metric spaces. A map $f : X \to Y$ is called a Lipschitz embedding of (X, d) into (Y, δ) if there exist two numbers $A, B \in$ $]0, +\infty[$ such that we have

$$
Ad(x, x') \leq \delta(f(x), f(x')) \leq Bd(x, x')
$$

for any $x, x' \in X$ (if we want to be more precise, we say that f is an (A, B) -Lipschitz embedding of (X, d) into (Y, δ)).

In this regard, several questions seem interesting to me:

– how to recognise if there exists, for a given metric space (X, d) , an integer n and a Lipschitz embedding of (X, d) into $(\mathbb{R}^n, \| \|)$?

– if it is the case, to calculate the rank of (X, d) (i.e. to minimise n);

– to study how, as *n* increases to $+\infty$, the distortion of (X, d) in $(\mathbb{R}^n, \|\ \|)$ decreases (that is to say, the lower bound of $\log\left(\frac{B}{A}\right)$ of all Lipschitz embeddings of (X, d) into $(\mathbb{R}^n, \| \|).$

In the present work, we will study in particular the metric space $(\mathbb{R}^k, \| \|P)$ from this point of view:

(a) we will describe three methods of embedding $(\mathbb{R}^k, \|\ \|^{p})$ into $(\mathbb{R}^n, \|\ \|)$:

– the first method (very simple, but which does not give a good evaluation of the rank nor the distortion) can, in particular, be carried out using lacunary series or Schauder basis;

[∗]Text received on 17 May 1983. P. Assouad, Université de Paris Sud, Centre d'Orsay, Département de Mathématique, Bâtiment 425, 91405 Orsay, Cedex.

¹This is not authoritative translation, and I do not claim any credit for the mathematical content of this document. Please send any corrections to junhyung.park@tuebingen.mpg.de.

– the second method, which generalises the preceding one, allows the embedding of the space (X, d^p) into a space $(\mathbb{R}^n, \| \|)$, for any number $p \in]0,1[$, for every metric space (X, d) of finite metric dimension (these spaces are studied notably in [1]);

– the third method uses generalised Koch curves (in fact this method extends the observation, due to Glaeser [5] p.57, that the classical curve of H. VON KOCH [7] realises a Lipschitz embedding of the space $([0,1], \|\cdot\|^{\text{Log}3/\text{Log}4})$ into $(\mathbb{R}^2, \|\|\cdot\|).$

(b) We show that this third method allows us, at least for $k = 1$, to obtain the exact value of the rank of the space $([0,1]^k, \| \| p)$.

So here is how this work is divided:

Section 1 SCHAUDER basis and lacunary series.

Section 2 Metric dimension and embedding.

Section 3 Generalised KOCH curves.

Section 4 Rank of the space $([0,1]^k, \| \|^{p})$.

Acknowledgements

This work was first written in English (March 1981); I would like to express my gratitude towards those who encouraged me to write it in the present form.

Notations

– Let $k \geq 1$ be an integer; we always denote by $\| \cdot \|$ the Euclidean norm on \mathbb{R}^k .

– Let $p \in]0,1[$; if T is a subset of the Euclidean space $(E, \|\ \|)$, we denote by $(T, \| \|P)$ the set T equipped with the distance $s, t \to \|s - t\|^p$

(this is really to do with a metric space, not a normed space).

– Let $b \in]0, +\infty[$; a subset T of a metric space (X, d) is said to be *b-separated* (resp. of diameter $\leq b$) if we have $d(s, t) > b$ (resp. $d(s, t) \leq b$) for every pair (s, t) of distinct points of T.

– Let x and y be two real numbers; we then write:

 $x \wedge y$ for Inf (x, y) , $x \vee y$ for Sup (x, y) , and x^+ for $\text{Sup}(x, 0)$.

1 Schauder basis and lacunary series

We are first going to describe *quite a general construction* (it can be carried out using Schauder basis or lacunary series, as we will see in the following; it can equally be applied to Section 2):

1.1. (a) Let φ be a map from a space (X, d) into a Hilbert space $(E, \|\ \|)$, and let $\tau \in]0,1]$ and $A, B, c \in]0, +\infty[$; we say that φ is a local (τ, A, B, c) -controlled embedding of (X, d) into $(E, \|\ \|)$ if it satisfies the following conditions for all $x, t \in X$:

(a1) $\tau c < d(s, t) \leq c$ implies $\|\varphi(s) - \varphi(t)\| \geq A;$

 $(a2)$ $\|\varphi(s) - \varphi(t)\| \le B(d(s, t) \wedge 1);$

(b) let $(v_i)_{i\in\mathbb{Z}}$ be a sequence, periodic with period 2N, of elements of a Euclidean space; we say that $(v_j)_{j\in\mathbb{Z}}$ is a cyclic base of $(F, \|\ \|)$ if $(v_1, ..., v_{2N})$ is an orthonormal basis of $(F, \|\ \|)$.

1.2. PROPOSITION. – Let $\tau, p \in]0,1[$ and $A, B, c \in]0,+\infty[$. Let (X,d) be a metric space with a designated 0 element, and let $(E, \|\ \|)$ be a Hilbert space.

For every $j \in \mathbb{Z}$, take a local (τ, A, B, c) -controlled embedding φ_j such that $\varphi_j(0) = 0$, of the space $(X, \tau^{-j}d)$ into $(E, \|\ \|)$. Also take a cyclic basis $(v_j)_{j \in \mathbb{Z}}$ of a Euclidean space $(F, \|\ \|)$ of dimension $2N$.

For every $s \in X$, we let $f(s) = \sum_{j \in \mathbb{Z}} \tau^{jp} \varphi_j(s) \otimes v_j$. Then we have

$$
B\left(\frac{c^{-p}}{1-\tau^p} + \frac{c^{1-p}}{1-\tau^{1-p}}\right) d^p(s,t) \ge ||f(s) - f(t)||
$$

\n
$$
\ge \left[Ac^{-p} - B\left(\frac{c^{-p}}{1-\tau^p}\tau^{Np} + \frac{c^{1-p}}{1-\tau^{1-p}}\tau^{N(1-p)}\right)\right] d^p(s,t).
$$

In particular, the map f is a Lipschitz embedding of (X, d^p) into $(E \otimes F, \|\ \|)$, as soon as N is sufficiently large to have $\frac{A}{B} > \frac{\tau^{Np}}{1-\tau^p} + c \frac{\tau^{N(1-p)}}{1-\tau^{1-p}}$ (E⊗F is equipped with the tensor product of the Hilbert structures of E and F).

Proof. – For each $j \in \mathbb{Z}$, we denote by f_j the map $s \to \tau^{jp} \varphi_j(s) \otimes v_j$. We have $f(0) = 0$; for the upper bound of $||f(s) - f(t)||$ that we propose to establish, it will thus suffice to show the convergence of the series $f = \sum_{j \in \mathbb{Z}} f_j$. Let (s, t) be a pair of distinct points of X, and let l be a natural number such that $\tau^{l+1} < \frac{1}{c}d(s,t) \leqslant \tau^l.$

(a) (Upper bound). We then have:

$$
||f(s) - f(t)|| \le \sum_{j \ge l+1} ||f_j(s) - f_j(t)|| + \sum_{j \le l} ||f_j(s) - f_j(t)||
$$

$$
\le \sum_{j \ge l+1} B\tau^{jp} + \sum_{j \le l} B\tau^{j(p-1)}d(s,t)
$$

$$
\le B\left(\frac{1}{1 - \tau^p}\tau^{(l+1)p} + \frac{d(s,t)}{1 - \tau^{1-p}}\tau^{l(p-1)}\right)
$$

$$
\le B\left(\frac{c^{-p}}{1 - \tau^p} + \frac{c^{1-p}}{1 - \tau^{1-p}}\right)d^p(s,t).
$$

(b) (Lower bound). We also have:

$$
||f(s) - f(t)|| \ge \left\| \sum_{-N < j - l \le N} (f_j(s) - f_j(t)) \right\|
$$

-
$$
\sum_{j-l > N} ||f_j(s) - f_j(t)|| - \sum_{j-l \le -N} ||f_j(s) - f_j(t)||
$$

$$
\ge ||f_l(s) - f_l(t)|| - \sum_{j-l > N} B\tau^{jp} + \sum_{j-l \le -N} B\tau^{j(p-1)} d(s, t)
$$

$$
\ge A\tau^{lp} - B\left(\frac{1}{1 - \tau^p} \tau^{(N+l+1)p} + \frac{d(s, t)}{1 - \tau^{1-p}} \tau^{(l-N)(p-1)}\right)
$$

$$
\ge \left[Ac^{-p} - B\left(\frac{c^{-p}}{1 - \tau^p} \tau^{Np} + \frac{c^{1-p}}{1 - \tau^{1-p}} \tau^{N(1-p)}\right) \right] d^p(s, t).
$$

Let us expound upon the preceding Proposition a little:

1.3. (a) If E is of dimension M , we have obtained a Lipschitz embedding of the space (X, d^p) into $(\mathbb{R}^{2NM}, \| \|)$; but $2NM$ is not a good evaluation of the rank of the space (X, d^p) , as we will see in Section 4.

(b) We can note that the above construction does not work well as p tends to 1 (even when the embedding is trivial for $p = 1$).

(c) Let $m \in \mathbb{Z}$; if T is a subset of diameter $\leq c\tau^m$ of the space (X, d) , then the map $s \to \sum_{j \geqslant m} \tau^{jp} \varphi_j(s) \otimes v_j$ is a Lipschitz embedding of the space (T, d^p) into $(E \otimes F, \|\ \|)$, as long as N is sufficiently large.

(d) Let $m \in \mathbb{Z}$; if T is a $c\tau^m$ -separated subset of the space (X, d) , then the map $s \to \sum_{j \leq m} \tau^{jp} \varphi_j(s) \otimes v_j$ is a Lipschitz embedding of the space (T, d^p) into $(E \otimes F, \|\ \|)$, as long as N is sufficiently large (C) and (d) can be shown exactly as Proposition 1.2, but taking into account the values that l can take).

1.4. COROLLARY. – Let $\tau, p \in]0,1[$ and $A, B, c \in]0, +\infty[$. Let φ be a local (τ, A, B, c) -controlled embedding of \mathbb{R}^k into a Euclidean space $(E, \|\ \|)$ and let $(v_i)_{i\in\mathbb{Z}}$ be a cyclic base of a Euclidean space $(E, \|\ \|)$ of dimension $2N$.

For each $s \in \mathbb{R}^k$, we let $f(s) = \sum_{j \in \mathbb{Z}} \tau^{jp} \varphi(\tau^{-j} s) \otimes v_j$. Then f is a Lipschitz embedding of $(\mathbb{R}^k, \| \|^{p})$ into $(E \otimes F, \| \|)$, as long as N is sufficiently large.

Proof. – Indeed, for each $j \in \mathbb{Z}$, the map $\varphi_j : s \to \varphi(\tau^{-j} s)$ is a local (τ, A, B, c) controlled embedding of the space $(\mathbb{R}^k, \tau^{-\tilde{j}} \| \|)$ into $(E, \| \|)$. г

Let us describe some examples of local embeddings of $\mathbb R$ into a Euclidean space:

(1.5) Let us fix $\tau \in]0,1]$ and take $E = \mathbb{C}$ (considered as a Euclidean space of dimension 2 on R). The function $\varphi : s \to \exp(is) - 1$ is then a local $(\tau, A, 2, c)$ controlled embedding of R in C (by taking, for example, $c = \frac{2\pi}{1+\tau}$ and $A =$ $|\varphi(c\tau)|$).

In particular, we can then embed $([0,1], \| \|^{p})$ into a Euclidean space using a lacunary Fourier series with appropriate vectorial coefficients.

(1.6) Let us fix $\tau \in]0,1[$ and take $E = \mathbb{R}^2 \otimes \mathbb{R}^2$ (the canonical base of \mathbb{R}^2 will be denoted by (e_1, e_2)). For each $j \in \mathbb{Z}$ and each $z \in D_j = 2^{-j}\mathbb{Z}$, we denote by $\Delta_{j,z}$ the functions $s \to (1-|1+2^{j+1}(z-s)|)^+$ (*Schauder basis*). Let $\lambda \in \mathbb{R} \setminus \{0\};$ the function

$$
\varphi_{\lambda} = \sum_{r \text{ even}} e_1 \otimes (e_1 \Delta_{0,r} + \lambda e_2 \Delta_{1,r/2}) + \sum_{r \text{ odd}} e_2 \otimes (e_1 \Delta_{0,r} + \lambda e_2 \Delta_{1,r/2})
$$

is then a local (τ, A, B, c) -controlled embedding of R into E, for appropriate values of A, B and c (because φ_{λ} is injective, bounded, Lipschitz and periodic on every interval of width $<$ 1).

1.7. COROLLARY. – In particular, let us take $\tau = \frac{1}{4}$ and $\lambda = 2^{-p}$. The embedding f of $(\mathbb{R}, \|\ \|^{p})$ into a Euclidean space constructed using the local embedding φ_{λ} can be written as $f = \sum_{j \in \mathbb{Z}} \sum_{z \in D_j} 2^{-jp} u'_{j,z} \otimes v'_j \Delta_{j,z}$, where the sequence $(v'_j)_{j\in\mathbb{Z}}$ (resp. for each $j \in \mathbb{Z}$, the sequence $r \to u'_{j,r(2^{-j}})$ is a cyclic basis of a Euclidean space F' (resp. E') of appropriate dimension.

Proof. – For each $j \in \mathbb{Z}$, we let $v'_{2j} = e_1 \otimes v_j$ and $v'_{2j+1} = e_2 \otimes v_j$; moreover, for each $z \in D_j$, we let $u'_{j,z} = e_1$ if z^{2^j} is even, and $u'_{j,z} = e_2$ otherwise. The sequence $(v'_j)_{j\in\mathbb{Z}}$ is thus a cyclic basis of $F'=\mathbb{R}^2\otimes F$; moreover, for each $j\in\mathbb{Z}$, the sequence $r \to u'_{j,r2^{-j}}$ is a cyclic basis of $E' = \mathbb{R}^2$.

We immediately have that the embedding f is of the form announced in the statement.

We will see in the next Section that the embedding process described in (1.2) can be applied to quite general metric spaces.

2 Metric dimension and embedding

2.1. we say that a metric space (X, d) is (C, s) -homogeneous if we have $|Y \cap Z| \leq C \left(\frac{b}{a}\right)^s$ for any $a, b \in]0, +\infty[$ $(a < b)$ and for any a-separated Y (resp. Z of diameter $\leq b$) in the space (X, d) . The metric dimension of (X, d) (which is denoted as $Dim(X, d))$ is the infimum of real numbers $s \geq 0$ such that, for a certain $C \in]0, +\infty[$, the space (X, d) is (C, s) -homogeneous.

This notion of metric dimension (there are others) is old, since it goes back to an article of G. BOULIGAND [3] (1928). The results which will follow are more recent, and appear in my thesis [1] (1977).

2.2. (a) the metric dimension of $(\mathbb{R}^n, \| \|)$ is equal to n (for any $n \in \mathbb{N}$);

(b) the metric dimension of (X, d^p) is equal to $\frac{1}{p}\text{Dim}(X, d)$ (for any $p \in]0, 1[$);

(c) if f is a Lipschitz embedding of (X, d) into (Y, δ) , we then have $\text{Dim}(X, d)$ $Dim(Y, \delta).$

It follows from (a) and (c) that, if (X, d) admits a Lipschitz embedding into a space $(\mathbb{R}^n, \| \|)$, then the space (X, d^p) is of finite metric dimension for any $p \in]0,1[$. We propose to establish a converse of sort to this observation. We will need two Lemmas.

2.3. Let (X, d) be a metric space, $b > 0$ a real number and $M \ge 2$ an integer; we define an (M, b) -colouring of (X, d) as any map $k: X \to \{1, ..., M\}$ such that $d(s, s') \leq b$ implies $k(s) \neq k(s')$, for all $s, s' \in X$ $(s \neq s')$.

As we know (BROOKS [4]), every graph of degree $\lt M$ possesses an Mcolouring. This can be reformulated as follows:

2.4. LEMMA – Let (X, d) be a metric space, $b > 0$ a real number and $M \ge 2$ an integer. Assume that we have $|\{x \in X \mid d(x,s) \leq b\}| \leq M$, for all $s \in X$.

Then the space (X, d) admits an (M, b) -colouring.

Proof. – We equip X with a well-ordering by identifying it with the set of ordinals of cardinality $\langle \text{Card}(X) \rangle$; for each $\alpha \in X$, we set $X_{\alpha} = \{ \beta \in X \mid 0 \leq \alpha \}$ $\beta < \alpha$.

(a) Let us fix $\alpha \in X$ and suppose that an (M, b) -colouring k_{α} of (X_{α}, d) is defined; let V be the set of values taken by k_{α} on $\{\beta \in X_{\alpha} \mid d(\beta, \alpha) \leqslant b\}$; we can choose an element m of $\{1, ..., M\}\$ V; we can then define an (M, b) -colouring $k_{\alpha+1}$ of $(X_{\alpha+1}, d)$ extending k_{α} by letting $k_{\alpha+1}(\alpha) = m$.

(b) This allows us to define inductively, for each $\alpha \in X$, an (M, b) -colouring k_{α} of (X_{α}, d) such that k_{α} extends k_{β} , for any $\alpha \in X$ and $\beta \in X_{\alpha}$.

The map $k: X \to \{1, ..., M\}$ which extends each of the k_{α} is then an (M, b) colouring of (X, d) . \Box

2.5 LEMMA. – Let (X, d) be a metric space, Y a 1-network of (X, d) (that is to say, a maximal 1-separated subset), $b > 8$ a real number and $M \geq 2$ and integer.

We denote by $(e_1, ..., e_M)$ the canonical basis of \mathbb{R}^M . Let k be an (M, b) colouring of (Y, d) . Then the map $\varphi : s \to \sum_{y \in Y} (2 - d(s, y))^+ e_{k(y)}$ is a local (τ, A, B, c) -controlled embedding of (X, d) into $(\mathbb{R}^M, \| \|)$, for $c = b - 4$, $\tau = \frac{4}{c}$, $A = \sqrt{2}$ and $B = 4M$.

Proof. For each $y \in Y$, we denote by Δ_y the map $s \to (2 - d(s, y))^+$. For each $s \in X$, we let $B_s = \{y \in Y \mid \Delta_y(s) \neq 0\}.$

(a) Let $s, t \in X$ with $4 < d(s,t) \leq b-4$. Then the sets B_s and B_t are disjoint and the colouring k is injective on $B_s \cup B_t$. We then have:

$$
\|\varphi(s) - \varphi(t)\|^2 \geqslant \sup\{\Delta_y^2(s) + \Delta_z^2(t) \mid y \in B_s, z \in B_t\} \geqslant 2.
$$

(b) Let $s, t \in X$. For each $y \in Y$, we have $|\Delta_y(s) - \Delta_y(t)| \leq 2(d(s,t) \wedge 1)$.

But we have $|B_s \cup B_t| \leq 2M$ (because k is injective on B_s and on B_t). So we have

$$
\|\varphi(s) - \varphi(t)\| \leq \sum_{y \in B_s \cup B_t} |\Delta_y(s) - \Delta_y(t)| \leq 4M(d(s, t) \wedge 1).
$$

 \Box

We now arrive at the result that we had as our goal:

2.6. PROPOSITION. – Let (X, d) be a metric space of finite metric dimension and let $p \in]0,1[$. Then there exists an integer $n \geq 0$ and a Lipschitz embedding of the space (X, d^p) into the Euclidean space $(\mathbb{R}^n, \| \|).$

Proof. – (a) We choose $C \in]0, +\infty[$ and $s \in]0, +\infty[$ such that the space (X, d) is (C, s) -homogeneous. Let τ be an element of $]0, 1[$; we let $c = \frac{4}{\tau}, b = c + 4$, $A = \sqrt{2}$, $M = C(2b)^s$ and $B = 4M$. Finally, we distinguish a point 0 in X.

(b) Let us fix $j \in \mathbb{Z}$. The space $(X, \tau^{-j}d)$ is also (C, s) -homogeneous. Let Y_j be a 1-network of $(X, \tau^{-j}d)$; we then have $|\{y \in Y_j \mid \tau^{-j}d(y, z) \leqslant b\}| \leqslant M$, for any $z \in Y_j$. The space $(Y_j, \tau^{-j}d)$ thus admits an (M, d) -colouring (see 2.4) and so there exists a local (τ, A, B, c) -controlled embedding φ_j of the space $(X, \tau^{-j}d)$ into the Euclidean space $(\mathbb{R}^M, \|\ \|)$ (see 2.5). By replacing φ_j by $\varphi_i - \varphi_i(0)$ if necessary, we can even assume that φ_i vanishes at 0.

(c) We have thus obtained, for each $j \in \mathbb{Z}$, a local (τ, A, B, c) -controlled embedding φ_j of $(X, \tau^{-j}d)$ into $(\mathbb{R}^M, \| \|)$ that vanishes at 0. Let $(v_j)_{j\in\mathbb{Z}}$ be a cyclic base of a Euclidean space $(F, \|\ \|)$. If the dimension of F is large enough, then the map $f : s \to \sum_{j \in \mathbb{Z}} \tau^{jp} \varphi_j(s) \otimes v_j$ is a Lipschitz embedding of the space (X, d^p) into the Euclidean space $(\mathbb{R}^M \otimes F, \|\ \|)$ (see 1.2). \Box

3 Generalised Koch curves

Our construction generalises, as we will see, that of the classical Koch curve [7]; it is what justifies our terminology.

3.1. Let $l \geq 2$ be an integer, η an element of $[0, 1]$, ψ an element of $[0, \pi]$, K a compact subset of \mathbb{R}^n and a_0 and a_l two distinct points in K.

We define a Koch chain with length l, scale η, flexibility $\leq \psi$ and mesh (a_0, K, a_l) in \mathbb{R}^n as any family $T = (T_0, ..., T_{l-1})$ of isometries of the Euclidean space satisfying the following properties:

(a) For each $r = 1, ..., l - 1$, the set $\eta T_r(K)$ (denoted K_r) is contained in K; (b) we have $\eta T_0(a_0) = a_0$ and $\eta T_{l-1}(a_l) = a_l$;

(c) for each $r = 1, ..., l - 1$, the point $\eta T_r(a_0)$ (denoted a_r) is equal to $\eta T_{r-1}(a_l);$

(d) for each $r = 1, \ldots, l-1$, we have

$$
(x - a_r \mid y - a_r) + ||x - a_r|| ||y - a_r|| \cos \psi \leq 0,
$$

for any $x \in K_{r-1}$ and $y \in K_r$;

(e) K_r and $K_{r'}$ are disjoint, for any $r, r' \in \{0, ..., l-1\}$ with $|r - r'| \geq 2$.

The sequence $(a_0, K_0, a_1, K_1, ..., a_{l-1}, K_{l-1}, a_l)$ is called the *support*, the points a_0, \ldots, a_l the vertices and the sets K_0, \ldots, K_{l-1} the links of the chain T.

Each Koch chain will allow the following construction:

3.2. Let $T = (T_0, ..., T_{l-1})$ be a Koch chain of length l, scale η , flexibility $\leq \Psi$ and mesh (a_0, K, a_l) in \mathbb{R}^n .

(a) For each integer $j \geqslant 1$, we denote by D_j^l the set of real numbers t of the form $t = \sum_{i=1}^{j} r_i l^{-i}$ with $r_1, r_2, ..., r_j \in \{0, ..., l-1\}$. We denote by D^l the union of the sets D_j^l (for $j \geq 1$). For each $r = 0, ..., l-1$, we set $S_r = \eta T_r$.

(b) For each integer $j \geqslant 1$ and each element $t = \sum_{i=1}^{j} r_i l^{-i}$ of D_j^l (with $r_1, ..., r_j \in \{0, ..., l-1\}$, we set $f_j(t) = S_{r_1} S_{r_2} ... S_{r_j}(a_0)$.

(c) For each pair of integers j, k (with $j \le k$), the map f_k obviously extends the map f_j (since we have $S_0(a_0) = a_0$, see 3.1b); we denote by f_T the map from D^l into \mathbb{R}^n which is equal to f_j on D_j^l , for any integer $j \geqslant 1$; the set $\gamma_T = f_T(D^i)$ is then called *generalised Koch curve with respect to the chain T*.

There is an abuse of terminology in calling γ_T a curve; but we are going to show that the closure of γ_T is effectively a curve, and, more precisely, that the continuous extension of f_T to [0, 1] is, for a certain $p \in]0,1[$, a Lipschitz embedding of $([0, 1], || \cdot ||^p)$ into $(\mathbb{R}^n, || \cdot ||)$.

Before showing this, let us describe some examples of Koch chains:

3.3. Let us identify the Euclidean space $(\mathbb{R}^2, \| \|)$ with \mathbb{C} , and let us fix $\theta \in]0, \frac{\pi}{2} [$; we set $a_0 = 1 + e^{i\theta}, a_1 = 0, a_2 = -\bar{a}_0$ and we denote by K the triangle with vertices a_0 , a_1 and a_2 , by K_0 the triangle with vertices a_0 , $a_0 - 1$ and a_1 , and by K_1 the triangle with vertices $a_1, a_2 + 1$ and a_2 . Clearly, there exists a Koch chain and a unique mesh (a_0, K, a_2) and having the sequence $(a_0, K_0, a_1, K_1, a_2)$ as its support; it is the chain T of length 2, scale $(2 \cos \frac{\theta}{2})^{-1}$ and flexibility $\leq 2\theta$ in \mathbb{R}^2 .

(a) In particular, for $\theta = \frac{\pi}{3}$, the curve γ_T is the set of points with dyadic parameter of the *classical Koch curve* (see [7]).

(b) For $\theta = \frac{\pi}{2}$ (which we had not allowed ourselves), the flexibility would no longer be bounded and γ_T would be the set of points with dyadic parameter of a Peano curve which fills K.

We are going to construct *quite a large class of Koch chains*:

3.4. Let $n \geq 1$ be an integer and $(e_1, ..., e_n)$ the canonical basis of \mathbb{R}^n .

(a) Let $\theta \in]0, \frac{\pi}{4} [$; we set $S(\theta) = \{x \in \mathbb{R}^n \mid ||x|| = tg\theta, (x \mid e_1) = 0 \}$; and we denote by $D(\theta)$ the convex hull of $S(\theta) \cup \{e_1, -e_1\}.$

(b) We say that two points x and y in \mathbb{Z}^n are adjacent if we have $||x-y|| = 1$.

(c) Let X be a subset of \mathbb{Z}^n . A sequence $\gamma = (x_0, ..., x_l)$ of distinct points of X is called a path of length l joining x_0 to x_l in X if x_{r-1} and x_r are adjacent, for any $r = 1, ..., l$.

3.5 LEMMA. – Let $k_1, ..., k_n \geq 0$ integers. We set

$$
X = \prod_{i=1}^{n} \{0, ..., 2k_i\} \text{ and } a = 2\sum_{i=1}^{n} k_i e_i.
$$

Then there exists a path γ of length 2l joining 0 to a in X, for any integer l satisfying $\sum_{i=1}^{n} k_i \leq l \leq \frac{1}{2} [\pi_{i=1}^n (2k_i + 1) - 1].$

Proof. (Induction on $\sum_{i=1}^{n} k_i$). – Let $k_1, ..., k_n \geq 0$ be integers and let us suppose that the result is shown for every $k'_1, ..., k'_n$ with $\sum_{i=1}^n k'_i < \sum_{i=1}^n k_i$.

(a) We will assume $k_1 \geq 1$ (by permuting the coordinates if necessary) and set $m_2 = \sum_{i=2}^n k_i$, $M_2 = \frac{1}{2} [\prod_{i=2}^n (2k_i + 1) - 1]$, $m_1 = m_2 + k_1 - 1$, $M_1 =$ $\frac{1}{2}[(2M_2+1)(2k_1-1)-1]$ and finally $m=m_1+1$, $M=M_1+2M_2+1$. We denote by X_1 (resp. X_2 , resp. X_3) the set of points x of X such that $(x \mid e_1)$ is less than or equal to $2k_1 - 2$ (resp. is equal to $2k_1 - 1$, resp. is equal to $2k_1$).

(b) Let l be an integer satisfying $m \leq l \leq M$; so there exist integers l_1 and l_2 with $m_1 \leq l_1 \leq M_1$, $0 \leq l_2 \leq M_2$ and $l = l_1 + 2l_2 + 1$. So there exist (by the induction hypothesis) a path γ_1 of length $2l_1$ joining 0 and $a_1 = a - 2e_1$ in X_1 , a point b_2 in X_2 and a path γ_2 of length $2l_2$ joining $a_2 = a - e_1$ and b_2 in X_2 ; so there also exists a path γ_3 of length $2l_2$ joining $b_3 = b_2 + e_1$ and a in X_3 . Let γ be the path obtained by joining the paths γ_1 , (a_1, a_2) , γ_2 , (b_2, b_3) and γ_3 ; it is the path of length $2l$ that we were looking for. \Box

3.6. PROPOSITION. – Let p be an element of $[0,1]$, n an integer strictly larger than $\frac{1}{p}$ and ψ an element of $]\frac{2\pi}{3}, \pi[$. Then there exists an integer $l \geqslant 2$ and a Koch chain of length l, scale l^{-p} and flexibility $\leq \psi$ in \mathbb{R}^n .

Proof. (a) We take $\theta = \frac{\psi}{2} - \frac{\pi}{3}$. We choose a real number $\beta > 0$ such that the cube $[-2\beta, 2\beta]^n$ is contained in $\frac{1}{2}D(\theta)$. We choose an even integer $l \geq 2$ satisfying $2n(1+\beta)l^p \leq l \leq \beta^nl^{pn} - 1$ (this is possible because we have $p < 1 <$ pn).

We set $\eta = l^{-p}$ and we denote by N the integer part of $\beta 1^p$.

(b) We set $b = N \sum_{i=1}^{n} e_i$, $K = \frac{1}{2n} D(\theta)$, $a_0 = \frac{1}{n} e_1$ and $X = \{-N, ..., N\}^n$. A sequence $\gamma = (y_0, ..., y_q)$ of distinct points of a subset Y of K will be called here a trail of length q joining y_0 and y_q in Y if $y_0, ..., y_q$ are consecutive vertices of a Koch chain of scale η, flexibility $\leq \psi$ and mesh $(a_0, K, -a_0)$.

 (c) Let

$$
Y^+ = \{ x \in K \mid (x \mid e_1) \ge N + 1 \}
$$

and

$$
Y^- = \{ x \in K \mid (x \mid e_1) \leqslant -(N+1) \}.
$$

Clearly we can join a_0 and $b' = b + e_1$ by a trail γ^+ of length $r \leq \frac{n}{n} - 1$ in Y^+ (it is for this that we took $\psi > \frac{2\pi}{3}$). Likewise we can join $-b'$ and $-a_0$ by a trail γ^- of length r in Y⁻. The integer $l - 2r - 2$ is thus even and satisfies

$$
2nN \leq l - 2r - 2 \leq (2N + 1)^{n} - 1.
$$

So there exists (see Lemma 3.5) a path γ_0 of length $l - 2r - 2$ joining b and $-b$ in X. Let γ be the sequence obtained by joining the paths γ^+ , (b', b) , γ_0 , $(-b, -b')$ and γ^- ; it is a trail of length l joining a_0 and $-a_0$ in K, which proves the Proposition.

Having obtained some examples of Koch chains, we are now going to show that each chain of length l and scale l^{-p} in \mathbb{R}^n defines a Lipschitz embedding of $([0, 1], \| \|^{p})$ into $(\mathbb{R}^{n}, \| \|)$.

Here are some preliminary observations:

3.7. (a) Let T be a Koch chain of length l, scale η and mesh (a_0, K, a_l) in \mathbb{R}^n . Let f_T be the map from D^l into \mathbb{R}^n which it defines (see 3.2). Then the points $f_T(0)$, $f_T(\frac{1}{l})$, ..., $f_T(\frac{l-1}{l})$, a_l are the vertices of the chain T.

(b) Let $k \geqslant 2$ be an integer. Then the points

$$
f_T(0), f_T(l^{-k}), f_T(2l^{-k}), ..., f_T((l^k-1)l^{-k}),
$$

 a_l are the vertices of a chain $T(k)$ of length l^k , scale η^k , mesh (a_0, K, a_l) and which satisfies $f_{T(k)} = f_T$ (observe that we have $D^{l^k} = D^l$).

(c) Let $x, y \in D^l$ with $|x-y| > \frac{1}{2l}$; then $f_T(x)$ and $f_T(y)$ belong to nonconsecutive links of the chain $T(3)$ (because we have $\frac{1}{2l} \geq 2l^{-3}$).

(d) The quantity $A_T = \text{Inf}\{\|f_T(x) - f_T(y)\| \mid |x - y| > \frac{1}{2l}\}\$ is thus zero. Furthermore, we denote by B_t the diameter of K.

(e) Let $s, t \in D^l$ (with $s < t$); let $j \in \mathbb{N}$ such that $|s, t|$ do not contain any element of D_j^l . We set $\bar{s}^j = l^j(s-z)$ and $\bar{t}^j = l^j(t-z)$, where z is the largest element of D_j^l smaller than or equal to s. Then we have

$$
|| f_T(s) - f_T(t) || = l^{-jp} || f_T(\bar{s}^j) - f_T(\bar{t}^j) || \leq B_T l^{-jp}.
$$

If, moreover, we have $|s-t| > \frac{1}{2}l^{-(j+1)}$, then we also have $||f_T(s) - f_T(t)|| \ge$ $A_t l^{-jp}$.

3.8. PROPOSITION. – Let p be an element of [0, 1] and let $T = (T_0, ..., T_{l-1})$ be a Koch chain of length l, scale l^{-p} , flexibility $\leqslant \psi$ and mesh (a_0, K, a_l) in \mathbb{R}^n . Let f_T be the map from D^l into \mathbb{R}^n which it defines (see 3.2).

Then f_T is a Lipschitz embedding of $(D^l, \|\ \|^{p})$ into $(\mathbb{R}^n, \|\ \|)$. More precisely, let A_T and B_T be the quantities defined in 3.6d: we then have

$$
A_T|x-y|^p\sin\left(\psi\vee\frac{\pi}{2}\right)\leqslant||f_T(x)-f_T(y)||\leqslant 2B_Tl^p|x-y|^p,
$$

for any $x, y \in D^l$.

Proof. – Let $x, y \in D^l$ (with $x < y$) and let $j \geq 0$ be the integer satisfying $|l^{-(j+1)}| < |x-y| \leq l^{-j}$. We distinguish two cases:

(a) If $]x, y[$ does not contain any element of D_j^l , we have

$$
A_T l^{-jp} \leqslant \|f_T(x) - f_T(y)\| \leqslant B_T l^{-jp}
$$

(see 3.6e) and so

$$
A_T|x - y|^p \le \|f_T(x) - f_T(y)\| \le B_T l^p |x - y|^p.
$$

(b) Otherwise, x, y contains a unique element a of D_j^l ; by replacing T with the reverse chain if necessary, we can assume that we have $\frac{1}{2}l^{-(j+1)} < |x - a| \leq$ l^{-j} and $|a-y| \leqslant l^{-j}$; so we have

$$
||f_T(x) - f_T(a)|| \sin \left(\psi \vee \frac{\pi}{2}\right) \le ||f_T(x) - f_T(y)||
$$

$$
\le ||f_T(x) - f_T(a)|| + ||f_T(a) - f_T(y)||
$$

(the first inequality comes from the fact that the chain T is of flexibility $\leq \psi$; see 3.1d); so we have $A_T l^{-jp} \sin(\psi \vee \frac{\pi}{2}) \leq ||f_T(x) - f_T(y)|| \leq 2B_T l^{-jp}$ (see 3.6e), which implies that

$$
A_T|x-y|^p\sin\left(\psi\vee\frac{\pi}{2}\right)\leqslant||f_T(x)-f_T(y)||\leqslant 2B_Tl^p|x-y|^p.
$$

4 Rank of the space $([0,1]^k, \| \| \|^{p})$

4.1 (a) Let (X, d) be a metric space. We define the *rank of* (X, d) (denoted by $rg(X, d)$ as the smallest integer $n \geq 0$ such that there exists a Lipschitz embedding of (X, d) into the Euclidean space $(\mathbb{R}^n, \| \|).$

(b) Let f be a Lipschitz embedding of (X, d) into the metric space (Y, δ) ; we define the *distortion of f* (denoted by $\Delta(f)$) as the lower bound of the real numbers λ such that there exists $A \in]0, +\infty[$ for which we have $Ad(x, y) \leq$ $\delta(f(x), f(y)) \leqslant Ae^{\lambda}d(x, y)$, for any $x, y \in X$.

(c) If n is an integer \geq rg(X, d), we define the n-distortion of (X, d) (denoted by $\Delta_n(X, d)$ as the lower bound of $\Delta(f)$ over every Lipschitz embedding f of (X, d) into the Euclidean space $(\mathbb{R}^n, \|\ \|)$.

We will not try to evaluate the *n*-distortion of $([0,1]^k, \| \|^{p})$ here; let us however describe some questions that arise.

4.2 If (X, d) embeds isometrically, i.e. with distortion 0, into an infinitedimensional Hilbert space (which is the case for the space $([0,1]^k, \| \|P)$), then we can expect that the *n*-distortion of (X, d) tends to 0 when *n* tends to + ∞ . Thus Kahane [6] showed, in response to a question by the author, that the *n*-distortion of $([0,1], \sqrt{\|\ \|})$ is smaller than or equal to $[0, \frac{1}{n})$.

On the other hand, we are going to evaluate quite precisely the rank of $([0,1]^k, \| \|^{p})$. Here are first some obvious preliminary remarks:

4.3 (a) Let d and δ be two metrics on a set X. We assume that the identity is a Lipschitz embedding of (X, d) into (X, δ) (we say in this case that d and δ are Lipschitz equivalent). Then (X, d) and (X, δ) have the same rank.

(b) Let (X, d) and (Y, δ) be two metric spaces. We equip $X \times Y$ with the *direct* sum metric $d \oplus \delta : (x, y), (x', y') \rightarrow d(x, x') + \delta(y, y')$. The rank of $(X \times Y, d \oplus \delta)$ is then smaller than or equal to $rg(X, d) + rg(Y, \delta)$.

(c) Let (X, d) be a metric space. We then have $Dim(X, d) \leqslant rg(X, d)$.

Let us now summarise the results obtained in Section 3:

4.4 PROPOSITION. – Let $k \geqslant 1$ be an integer and p an element of $]0,1[$. Let n be the smallest integer $> \frac{1}{p}$. Then the space $([0,1]^k, \|\ \|^{p})$ is of rank $\leq kn$.

Proof. – (a) We have shown, in 3.6, the existence of an integer $l \geq 2$ and a Koch chain of length l, scale l^{-p} and flexibility $\leq \frac{3\pi}{4}$ in \mathbb{R}^n . As a result, there exists (see 3.8) a Lipschitz embedding of $(D^l, \|\ \|^{p})$ into $(\mathbb{R}^n, \|\ \|)$. Continuously extending this embedding, we obtain a Lipschitz embedding of $([0, 1], || \cdot ||^p)$ into $(\mathbb{R}^n, \| \|)$. So the space $([0, 1], \| \|^{p})$ is of rank $\leq n$.

(b) Let us denote by d (resp. δ) the metric $x, y \to \|x - y\|^p$ on $[0, 1]^k$ (resp. on [0, 1]). The metric d is Lipschitz equivalent to $\delta \oplus ... \oplus \delta$ (k times). The remark 4.3b thus shows that $([0,1]^k, \| \|^{p})$ is of rank $\leq n k$. г

4.5 As a result of 2.2, the metric dimension of $([0,1]^k, \| \|^{p})$ is equal to $\frac{k}{p}$. Taking into account 4.3c, we see that $([0,1]^k, \| \|^{p})$ is of rank $\geq \frac{k}{p}$.

The rank of $([0, 1], || ||p)$ (for $p \in]0, 1[$) is thus the smallest integer $> \frac{1}{p}$, if $\frac{1}{p}$ is not an integer. We propose to prove that this result remains true even if $\frac{1}{p}$ is an integer (different from 1). More generally, we are going to establish that $([0,1]^k, \| \|^{p})$ is of rank $\geq \frac{k}{p}$ for any integer $k \geq 1$ and $p \in]0,1[$.

This will result from three lemmas.

4.6. (a) A symmetric kernel $d: X^2 \to]0, +\infty[$ which is zero on and only on the diagonal is called a *pseudometric on* X if there exists a number $a \in [1, +\infty[$ such that we have $d(x, y) \leq a(d(x, z) + d(z, y))$ for any $x, y, z \in X$ (when we want to be more precise, we say that d is an a-pseudometric on X). We then equip the space (X, d) , which we call a *pseudometric space*, with the topology generated by the "open" balls with respect to the pseudometric d.

(b) Let (X, d) be a pseudometric space; for each open subset U of (X, d) , we denote by $\tau(U)$ the *diameter of* (U, d) , i.e. the quantity $\text{Sup}\{d(u, v) \mid u, v \in U\}$. We then define an outer measure μ_d on X in the following way: for each subset A of X and each $\epsilon > 0$, we set

 $\mu_{d,\epsilon}(A) = \text{Inf}\{\sum$ i∈N $\tau(U_i) | (U_i)_{i \in \mathbb{N}}$ covering of A by open sets of diameter $\leq \varepsilon$ }

and

$$
\mu_d(A) = \operatorname{Sup}_{\epsilon > 0} \mu_{d,\epsilon}(A)
$$

(so the measure μ_d is the outer measure on X obtained by Method II of Rogers [8] p.27 from the pre-measure τ).

We will say that μ_d is the Hausdorff measure on (X, d) .

4.7 LEMMA – Let (X, d) and (Y, δ) be two pseudometric spaces; let $A, B \in$ $]0, +\infty[$. Let f be a map from X into Y satisfying $Ad(x, x') \leq \delta(f(x), f(x')) \leq$ $Bd(x, x')$ for any $x, x' \in X$. We then have $A\mu_d(X) \leq \mu_{\delta}(f(X)) \leq B\mu_d(X)$.

Proof. When d and δ are metrics, it is a particular case of Theorem 29 in [8]. Moreover, the proof of this theorem clearly remains valid (see $[8]$ p.54) even if d and δ are not metrics. \Box

4.8 Every power of a metric is a pseudometric; in addition, we can show ([1] Lemma 1.14) that every pseudometric is Lipschitz equivalent to a power of a metric.

4.9 LEMMA. – Let (X, d) and (Y, δ) be two metric spaces, x_0 a point in X and y_0 a point in Y; let $A, B \in]0, +\infty[$. We assume that the closed balls of (Y, δ) are compact and that, for each finite subset F of X containing x_0 , there exists an (A, B) -Lipschitz embedding g_F of (F, d) into (Y, δ) satisfying $g_F(x_0) = y_0$. Then there exists an (A, B) -Lipschitz embedding of (X, d) into (Y, δ) .

Proof. For each finite subset F of X containing x_0 , we define a map f_F from X into Y by letting $f_F(x) = g_F(x)$ if x belongs to F, and $f_F(x) = y_0$ otherwise. We then let $f(x) = \lim_{F \mathscr{U}} f_F(x)$ (for each $x \in X$), where $\mathscr U$ is an ultrafilter finer than the filter of inclusion on the set of every finite subsets of X containing x_0 (we observe that $f_F(x)$ is, for any F, an element of the closed ball centred at y_0 with radius $Bd(x_0, x)$; it is the compactness of this ball which ensures the existence of $f(x)$.

The map f is the embedding that we were looking for.

$$
\Box
$$

4.10 Let $\varepsilon \in]0, +\infty[$. A subset T of a metric space (X, d) is said to be ε -dense in (X, d) if, for each $x \in X$, there exists $t \in T$ with $d(x, t) < \varepsilon$.

4.11. LEMMA. – Let F be an α -separated subset and G an ε -dense subset of a metric space (X, d) . Then there exists a map $h : F \to G$ satisfying $\left(1-\frac{2\varepsilon}{\alpha}\right)d(x,y)\leqslant \delta(h(x),h(y))\leqslant \left(1+\frac{2\varepsilon}{\alpha}\right)d(x,y)$ for any $x,y\in F$.

Proof. As G is ε -dense, we can choose, for each $x \in F$, a point $h(x)$ in G with $d(x, h(x)) < \varepsilon$. Let us fix $x, y \in F$ (with $x \neq y$); we then have:

$$
d(h(x), h(y)) \le d(x, y) + d(x, h(x)) + d(y, h(y))
$$

$$
\le d(x, y) + 2\varepsilon \le \left(1 + \frac{2\varepsilon}{\alpha}\right) d(x, y)
$$

and

$$
d(x, y) \le d(h(x), h(y)) + d(x, h(x)) + d(y, h(y))
$$

$$
\le d(h(x), h(y)) + \frac{2\varepsilon}{\alpha}d(x, y).
$$

Hence the map h is the map that we were looking for.

 \Box

Now, here is the result that we had in sight:

4.12. PROPOSITION. – Let $k \geq 1$ be an integer and p an element of $]0,1[$. Denote by $r(k, p)$ the rank of the metric space $([0, 1]^k, \| \|^{p})$. We then have $m \leqslant r(k, p) \leqslant kn$, where m is the smallest integer $> \frac{k}{p}$, and n the smallest $integer > \frac{1}{p}.$

In particular, the rank of $([0,1], \| \|^{p})$ is the smallest integer $> \frac{1}{p}$.

Proof. – (a) We have already shown the inequalities $r(k, p) \leq k n$ (see 4.4) and $r(k, p) \geq \frac{k}{p}$ (see 4.5). Hence it remains to establish the inequality $r(k, p) > \frac{k}{p}$, in the case where $\frac{k}{p}$ is an integer.

(b) For that, we are going to assume that there exists an (A, B) -Lipschitz embedding f of $([0,2]^k, \|\ \|^{p})$ into $(\mathbb{R}^q, \|\ \|)$ (with $\frac{k}{p} = q \in \mathbb{N}$) and show that this leads to a contradiction; this will establish the Proposition.

(c) Let f be the embedding whose existence we assumed in (b) . So we have $A^{q}||x-y||^{k} \leq ||f(x) - f(y)||^{q} \leq B^{q}||x-y||^{k}$, for any $x, y \in [0, 2]^{k}$. Lemma 4.7 (applied to the pseudometrics $d: x, y \to \|x - y\|^k$ on $[0, 2]^k$ and $\delta: s, t \to$ $||s-t||^q$ on \mathbb{R}^q) implies that the set $f\left(\left[\frac{1}{2},\frac{3}{2}\right]^k\right)$ has non-zero Lebesgue measure

in \mathbb{R}^q and so possesses (by the Lebesgue differentiation theorem) a density point $t_0 = f(x_0).$

(*d*) For each $\beta \in]0, \frac{1}{2}[$ and each $x \in [-1, 1]^k$, we set

$$
f_{\beta}(x) = \beta^{-p}(f(x_0 + \beta x) - f(x_0)).
$$

For each $\beta \in]0, \frac{1}{2}[$ the map f_{β} thus defined is an (A, B) -Lipschitz embedding of $([-1, 1]^{k}, || \, ||^{p})$ into $(\mathbb{R}^{q}, || \, ||)$ and we have:

$$
\beta^k \lambda(f_\beta([-1,1]^k) \cap S(0,A))
$$

= $\lambda(f(x_0 + \beta[-1,1]^k) \cap S(t_0, A\beta^p)) \geq \lambda(f([0,2]^k) \cap S(t_0, A\beta^p))$

(where we denoted by λ the Lebesgue measure on \mathbb{R}^q and by $S(z, r)$ the closed ball centred at z and with radius r in the space $(\mathbb{R}^q, \| \|)$).

(e) As t_0 is a density point in $f\left(\left[\frac{1}{2},\frac{3}{2}\right]^k\right)$, the inequality that we established in (d) shows that we have

$$
\lim_{\beta \to 0} \lambda(f_{\beta}([-1,1]^k) \cap S(0,A)) = \lambda(S(0,A)).
$$

Hence, for each $\varepsilon > 0$, we can choose a number $\beta(\varepsilon) \in]0, \frac{1}{2}[$ such that $G_{\varepsilon} =$ $f_{\beta(\varepsilon)}([-1,1]^k) \cap S(0,A)$ is ε -dense in the space $(S(0,A), \|\ \|)$.

Moreover, $g_{\varepsilon} = f_{\beta(\varepsilon)}^{-1}$ is a $(\frac{1}{B}, \frac{1}{A})$ -Lipschitz embedding of the space $(G_{\varepsilon}, \| \|)$ into the space $([-1, 1]^k, \| \|^{p}).$

(f) Let F be a finite subset of $S(0, A)$ containing 0; so there exists $\alpha > 0$ such that F is α -separated in $(S(0, A), \| \|)$. We fix $\varepsilon = \frac{\alpha}{4}$. So there exists (by Lemma 4.11) a $(\frac{1}{2}, \frac{3}{2})$ -Lipschitz embedding h_F of $(F, \|\ \|)$ into $(G_{\varepsilon}, \|\ \|)$, and we can assume $h_F(0) = 0$ (because 0 belongs to G_{ε}). The map $g_F = g_{\varepsilon} \circ h_F$ is thus a $\left(\frac{1}{2B}, \frac{3}{2A}\right)$ -Lipschitz embedding of the space $(F, \|\ \|)$ into the space $([-1, 1]^k, \| \tilde{\mathbb{P}}$, and it satisfies $g_F (0) = 0$.

(g) Hence there exists (by Lemma 4.9) a $\left(\frac{1}{2B}, \frac{3}{2A}\right)$ -Lipschitz embedding of the space $(S(0, A), \| \|)$ into the space $([-1, 1]^k, \| \| \mathbb{P})$, in contradiction with the fact that the topological dimension of $S(0, A)$ is equal to $q > k$. This is the contradiction that we were looking for. \Box

The inequality $r\left(1, \frac{1}{2}\right) > 2$ could have been proved by using the following result of Besicovitch and Schoenberg:

4.13. [2] Let f be a continuous and injective map from $[0, 1]$ into \mathbb{R}^2 . We then have $\text{Inf}\left\{\sum_{i=1}^{j}||f(x_i) - f(x_{i-1})||^2\right\} = 0$. where the infimum is taken on all the partitions $0 = x_0 < x_1 < x_2 < ... < x_{j-1} < x_j = 1$ of the segment [0, 1].

Likewise the inequality $r\left(1, \frac{1}{q}\right) > q$ could have been established by using an extension (due to Y. Katznelson, not published) of 4.13 to Jordan curves $f:[0,1] \to \mathbb{R}^q$, the q-variation then replacing the 2-variation.

bibliography

- [1] Assouad (P.). Espaces métriques, plongements, facteurs, Thèse (Orsay, 1977)
- [2] BESICOVITCH $(A.S.)$, SCHOENBERG $(I.J.)$. On Jordan arcs and Lipschitz classes of functions defined on them. Acta Math. 106 (1961), 113-136.
- [3] Bouligand (G.). Ensembles impropres et ordre dimensionnel, Bull. Sci. Math.

52 (1928), 320-344 and 361-376.

[4] Brooks (R.L.). – On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941), 194-197.

[5] Glaeser (G.). – Étude de quelques algèbres tayloriennes, J. Analyse Math. 6(1958), 1-124.

[6] Kahane (J.P.). – Hélices et quasi-hélices, Math. Analysis and Appl. (L. Nachbin ed.), 417-433, Academic Press, 1981, New York.

[7] Von Koch (H.). – Une méthode géométrique élémentaire pour l'étude de certaines questions de la théorie des courbes planes, Acta Math. 30 (1906), 145-174.

[8] Rogers (C.A.). – Hausdorff measures, Cambridge University Press (1970).

APPENDIX. A curve leading to an embedding of $([0,1], \sqrt{\|\hspace{0.1cm}\|})$ into \mathbb{R}^3 :

Let $\theta = \text{Arctg}_{3}^{2}$; we consider a Koch chain T of length 144, scale $\frac{1}{12}$, flexibility $\leq \frac{\pi}{2}+2\theta$ and mesh $(a_0, D(\theta), a_{144})$ in \mathbb{R}^3 , whose support $(a_0, K_0, a_1, ..., a_{143}, K_{143}, a_{144})$ is given by the following diagram:

A crude calculation (by hand) shows that there exists a real number $A > 0$ such that we have $A\sqrt{|s-t|} \leq ||f_T(s) - f_T(t)|| \leq 2184A\sqrt{|s-t|}$, for any $s, t \in [0, 1].$