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Abstract. – A Lipschitz embedding of a metric space (X, d) into another one
(Y, δ) is a map f : X → Y such that

∃A,B ∈]0,+∞[, ∀x, x′ ∈ X, Ad(x, x′) 6 δ(f(x), f(x′)) 6 Bd(x, x′).

We describe here three methods to obtain Lipschitz embeddings of the metric space
(Rk, ‖ ‖p) into some metric space (Rn, ‖ ‖).

The third method allows us to minimise, for k = 1, the rank of such an embedding
(i.e. to obtain the minimal value of the integer n).

Introduction

Let (X, d) and (Y, δ) be two metric spaces. A map f : X → Y is called
a Lipschitz embedding of (X, d) into (Y, δ) if there exist two numbers A,B ∈
]0,+∞[ such that we have

Ad(x, x′) 6 δ(f(x), f(x′)) 6 Bd(x, x′)

for any x, x′ ∈ X (if we want to be more precise, we say that f is an (A,B)-
Lipschitz embedding of (X, d) into (Y, δ)).

In this regard, several questions seem interesting to me:
– how to recognise if there exists, for a given metric space (X, d), an integer

n and a Lipschitz embedding of (X, d) into (Rn, ‖ ‖)?
– if it is the case, to calculate the rank of (X, d) (i.e. to minimise n);
– to study how, as n increases to +∞, the distortion of (X, d) in (Rn, ‖ ‖)

decreases (that is to say, the lower bound of log
(
B
A

)
of all Lipschitz embeddings

of (X, d) into (Rn, ‖ ‖)).
In the present work, we will study in particular the metric space (Rk, ‖ ‖p)

from this point of view:
(a) we will describe three methods of embedding (Rk, ‖ ‖p) into (Rn, ‖ ‖):
– the first method (very simple, but which does not give a good evaluation

of the rank nor the distortion) can, in particular, be carried out using lacunary
series or Schauder basis;
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– the second method, which generalises the preceding one, allows the em-
bedding of the space (X, dp) into a space (Rn, ‖ ‖), for any number p ∈]0, 1[, for
every metric space (X, d) of finite metric dimension (these spaces are studied
notably in [1]);

– the third method uses generalised Koch curves (in fact this method ex-
tends the observation, due to Glaeser [5] p.57, that the classical curve of H.
von Koch [7] realises a Lipschitz embedding of the space ([0, 1], ‖ ‖Log3/Log4)
into (R2, ‖ ‖)).

(b) We show that this third method allows us, at least for k = 1, to obtain
the exact value of the rank of the space ([0, 1]k, ‖ ‖p).

So here is how this work is divided:
Section 1 Schauder basis and lacunary series.
Section 2 Metric dimension and embedding.
Section 3 Generalised Koch curves.
Section 4 Rank of the space ([0, 1]k, ‖ ‖p).
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Notations

– Let k > 1 be an integer; we always denote by ‖ ‖ the Euclidean norm on
Rk.

– Let p ∈]0, 1[; if T is a subset of the Euclidean space (E, ‖ ‖), we denote
by (T, ‖ ‖p) the set T equipped with the distance s, t→ ‖s− t‖p

(this is really to do with a metric space, not a normed space).
– Let b ∈]0,+∞[; a subset T of a metric space (X, d) is said to be b-separated

(resp. of diameter 6 b) if we have d(s, t) > b (resp. d(s, t) 6 b) for every pair
(s, t) of distinct points of T .

– Let x and y be two real numbers; we then write:
x ∧ y for Inf(x, y), x ∨ y for Sup(x, y), and x+ for Sup(x, 0).

1 Schauder basis and lacunary series

We are first going to describe quite a general construction (it can be carried
out using Schauder basis or lacunary series, as we will see in the following; it
can equally be applied to Section 2):

1.1. (a) Let ϕ be a map from a space (X, d) into a Hilbert space (E, ‖ ‖), and
let τ ∈]0, 1[ and A,B, c ∈]0,+∞[; we say that ϕ is a local (τ, A,B, c)-controlled
embedding of (X, d) into (E, ‖ ‖) if it satisfies the following conditions for all
x, t ∈ X:

(a1) τc < d(s, t) 6 c implies ‖ϕ(s)−ϕ(t)‖ > A;
(a2) ‖ϕ(s)−ϕ(t)‖ 6 B(d(s, t) ∧ 1);
(b) let (vj)j∈Z be a sequence, periodic with period 2N , of elements of a

Euclidean space; we say that (vj)j∈Z is a cyclic base of (F, ‖ ‖) if (v1, ..., v2N )
is an orthonormal basis of (F, ‖ ‖).
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1.2. Proposition. – Let τ, p ∈]0, 1[ and A,B, c ∈]0,+∞[. Let (X, d) be a
metric space with a designated 0 element, and let (E, ‖ ‖) be a Hilbert space.

For every j ∈ Z, take a local (τ, A,B, c)-controlled embedding ϕj such that
ϕj(0) = 0, of the space (X, τ−jd) into (E, ‖ ‖). Also take a cyclic basis (vj)j∈Z
of a Euclidean space (F, ‖ ‖) of dimension 2N .

For every s ∈ X, we let f(s) =
∑
j∈Z τ

jpϕj(s)⊗ vj. Then we have

B

(
c−p

1− τp
+

c1−p

1− τ1−p

)
dp(s, t) >

∥∥f(s)− f(t)
∥∥

>

Ac−p −B( c−p

1− τp
τNp +

c1−p

1− τ1−p
τN(1−p)

) dp(s, t).
In particular, the map f is a Lipschitz embedding of (X, dp) into (E⊗F, ‖ ‖),

as soon as N is sufficiently large to have A
B > τNp

1−τp +cτ
N(1−p)

1−τ1−p (E⊗F is equipped
with the tensor product of the Hilbert structures of E and F ).

Proof. – For each j ∈ Z, we denote by fj the map s→ τjpϕj(s)⊗ vj . We have
f(0) = 0; for the upper bound of ‖f(s) − f(t)‖ that we propose to establish,
it will thus suffice to show the convergence of the series f =

∑
j∈Z fj . Let

(s, t) be a pair of distinct points of X, and let l be a natural number such that
τl+1 < 1

cd(s, t) 6 τl.

(a) (Upper bound). We then have:∥∥f(s)− f(t)
∥∥ 6

∑
j>l+1

∥∥fj(s)− fj(t)∥∥+
∑
j6l

∥∥fj(s)− fj(t)∥∥
6
∑
j>l+1

Bτjp +
∑
j6l

Bτj(p−1)d(s, t)

6 B

(
1

1− τp
τ(l+1)p +

d(s, t)

1− τ1−p
τl(p−1)

)
6 B

(
c−p

1− τp
+

c1−p

1− τ1−p

)
dp(s, t).

(b) (Lower bound). We also have:

∥∥f(s)− f(t)
∥∥ >

∥∥∥∥∥∥
∑

−N<j−l6N

(fj(s)− fj(t))

∥∥∥∥∥∥
−
∑

j−l>N

∥∥fj(s)− fj(t)∥∥− ∑
j−l6−N

∥∥fj(s)− fj(t)∥∥
>
∥∥fl(s)− fl(t)∥∥− ∑

j−l>N

Bτjp +
∑

j−l6−N

Bτj(p−1)d(s, t)

> Aτlp −B
(

1

1− τp
τ(N+l+1)p +

d(s, t)

1− τ1−p
τ(l−N)(p−1)

)

>

Ac−p −B( c−p

1− τp
τNp +

c1−p

1− τ1−p
τN(1−p)

) dp(s, t).
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Let us expound upon the preceding Proposition a little:
1.3. (a) If E is of dimension M , we have obtained a Lipschitz embedding of

the space (X, dp) into (R2NM , ‖ ‖); but 2NM is not a good evaluation of the
rank of the space (X, dp), as we will see in Section 4.

(b) We can note that the above construction does not work well as p tends
to 1 (even when the embedding is trivial for p = 1).

(c) Let m ∈ Z; if T is a subset of diameter 6 cτm of the space (X, d), then
the map s→

∑
j>m τ

jpϕj(s)⊗ vj is a Lipschitz embedding of the space (T, dp)
into (E ⊗ F, ‖ ‖), as long as N is sufficiently large.

(d) Let m ∈ Z; if T is a cτm-separated subset of the space (X, d), then the
map s→

∑
j<m τ

jpϕj(s)⊗vj is a Lipschitz embedding of the space (T, dp) into
(E⊗F, ‖ ‖), as long as N is sufficiently large ((c) and (d) can be shown exactly
as Proposition 1.2, but taking into account the values that l can take).

1.4. Corollary. – Let τ, p ∈]0, 1[ and A,B, c ∈]0,+∞[. Let ϕ be a local
(τ, A,B, c)-controlled embedding of Rk into a Euclidean space (E, ‖ ‖) and let
(vj)j∈Z be a cyclic base of a Euclidean space (E, ‖ ‖) of dimension 2N .

For each s ∈ Rk, we let f(s) =
∑
j∈Z τ

jpϕ(τ−js)⊗vj. Then f is a Lipschitz
embedding of (Rk, ‖ ‖p) into (E ⊗ F, ‖ ‖), as long as N is sufficiently large.

Proof. – Indeed, for each j ∈ Z, the map ϕj : s→ ϕ(τ−js) is a local (τ, A,B, c)-
controlled embedding of the space (Rk, τ−j‖ ‖) into (E, ‖ ‖).

Let us describe some examples of local embeddings of R into a Euclidean
space:

(1.5) Let us fix τ ∈]0, 1[ and take E = C (considered as a Euclidean space of
dimension 2 on R). The function ϕ : s→ exp(is)− 1 is then a local (τ, A, 2, c)-
controlled embedding of R in C (by taking, for example, c = 2π

1+τ and A =
|ϕ(cτ)|).

In particular, we can then embed ([0, 1], ‖ ‖p) into a Euclidean space using
a lacunary Fourier series with appropriate vectorial coefficients.

(1.6) Let us fix τ ∈]0, 1[ and take E = R2⊗R2 (the canonical base of R2 will
be denoted by (e1, e2)). For each j ∈ Z and each z ∈ Dj = 2−jZ, we denote by
∆j,z the functions s→ (1−|1+2j+1(z−s)|)+ (Schauder basis). Let λ ∈ R\{0};
the function

ϕλ =
∑
r even

e1 ⊗ (e1∆0,r + λe2∆1,r/2) +
∑
r odd

e2 ⊗ (e1∆0,r + λe2∆1,r/2)

is then a local (τ, A,B, c)-controlled embedding of R into E, for appropriate
values of A,B and c (because ϕλ is injective, bounded, Lipschitz and periodic
on every interval of width < 1).

1.7. Corollary. – In particular, let us take τ = 1
4 and λ = 2−p. The

embedding f of (R, ‖ ‖p) into a Euclidean space constructed using the local em-
bedding ϕλ can be written as f =

∑
j∈Z

∑
z∈Dj

2−jpu′j,z ⊗ v′j∆j,z, where the
sequence (v′j)j∈Z (resp. for each j ∈ Z, the sequence r → u′j,r2−j ) is a cyclic
basis of a Euclidean space F ′ (resp. E′) of appropriate dimension.
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Proof. – For each j ∈ Z, we let v′2j = e1 ⊗ vj and v′2j+1 = e2 ⊗ vj ; moreover,
for each z ∈ Dj , we let u′j,z = e1 if z2j is even, and u′j,z = e2 otherwise. The
sequence (v′j)j∈Z is thus a cyclic basis of F ′ = R2⊗F ; moreover, for each j ∈ Z,
the sequence r → u′j,r2−j is a cyclic basis of E′ = R2.

We immediately have that the embedding f is of the form announced in the
statement.

We will see in the next Section that the embedding process described in (1.2)
can be applied to quite general metric spaces.

2 Metric dimension and embedding

2.1. we say that a metric space (X, d) is (C, s)-homogeneous if we have
|Y ∩Z| 6 C

(
b
a

)s
for any a, b ∈]0,+∞[ (a < b) and for any a-separated Y (resp.

Z of diameter 6 b) in the space (X, d). The metric dimension of (X, d) (which
is denoted as Dim(X, d)) is the infimum of real numbers s > 0 such that, for a
certain C ∈]0,+∞[, the space (X, d) is (C, s)-homogeneous.

This notion of metric dimension (there are others) is old, since it goes back
to an article of G. Bouligand [3] (1928). The results which will follow are
more recent, and appear in my thesis [1] (1977).

2.2. (a) the metric dimension of (Rn, ‖ ‖) is equal to n (for any n ∈ N);
(b) the metric dimension of (X, dp) is equal to 1

pDim(X, d) (for any p ∈]0, 1[);
(c) if f is a Lipschitz embedding of (X, d) into (Y, δ), we then have Dim(X, d) 6

Dim(Y, δ).
It follows from (a) and (c) that, if (X, d) admits a Lipschitz embedding into

a space (Rn, ‖ ‖), then the space (X, dp) is of finite metric dimension for any
p ∈]0, 1[. We propose to establish a converse of sort to this observation. We will
need two Lemmas.

2.3. Let (X, d) be a metric space, b > 0 a real number andM > 2 an integer;
we define an (M, b)-colouring of (X, d) as any map k : X → {1, ...,M} such that
d(s, s′) 6 b implies k(s) 6= k(s′), for all s, s′ ∈ X (s 6= s′).

As we know (Brooks [4]), every graph of degree < M possesses an M -
colouring. This can be reformulated as follows:

2.4. Lemma – Let (X, d) be a metric space, b > 0 a real number and M > 2
an integer. Assume that we have |{x ∈ X | d(x, s) 6 b}| 6M , for all s ∈ X.

Then the space (X, d) admits an (M, b)-colouring.

Proof. – We equip X with a well-ordering by identifying it with the set of
ordinals of cardinality < Card(X); for each α ∈ X, we set Xα = {β ∈ X | 0 6
β < α}.

(a) Let us fix α ∈ X and suppose that an (M, b)-colouring kα of (Xα, d) is
defined; let V be the set of values taken by kα on {β ∈ Xα | d(β,α) 6 b}; we can
choose an element m of {1, ...,M}\V ; we can then define an (M, b)-colouring
kα+1 of (Xα+1, d) extending kα by letting kα+1(α) = m.

(b) This allows us to define inductively, for each α ∈ X, an (M, b)-colouring
kα of (Xα, d) such that kα extends kβ, for any α ∈ X and β ∈ Xα.

The map k : X → {1, ...,M} which extends each of the kα is then an (M, b)-
colouring of (X, d).
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2.5 Lemma. – Let (X, d) be a metric space, Y a 1-network of (X, d) (that
is to say, a maximal 1-separated subset), b > 8 a real number and M > 2 an
integer.

We denote by (e1, ..., eM ) the canonical basis of RM . Let k be an (M, b)-
colouring of (Y, d). Then the map ϕ : s →

∑
y∈Y (2 − d(s, y))+ek(y) is a local

(τ, A,B, c)-controlled embedding of (X, d) into (RM , ‖ ‖), for c = b− 4, τ = 4
c ,

A =
√

2 and B = 4M .

Proof. For each y ∈ Y , we denote by ∆y the map s→ (2− d(s, y))+.
For each s ∈ X, we let Bs = {y ∈ Y | ∆y(s) 6= 0}.
(a) Let s, t ∈ X with 4 < d(s, t) 6 b − 4. Then the sets Bs and Bt are

disjoint and the colouring k is injective on Bs ∪Bt. We then have:

‖ϕ(s)−ϕ(t)‖2 > Sup{∆2
y(s) + ∆2

z(t) | y ∈ Bs, z ∈ Bt} > 2.

(b) Let s, t ∈ X. For each y ∈ Y , we have |∆y(s)−∆y(t)| 6 2(d(s, t) ∧ 1).
But we have |Bs ∪ Bt| 6 2M (because k is injective on Bs and on Bt). So

we have

‖ϕ(s)−ϕ(t)‖ 6
∑

y∈Bs∪Bt

|∆y(s)−∆y(t)| 6 4M(d(s, t) ∧ 1).

We now arrive at the result that we had as our goal:

2.6. Proposition. – Let (X, d) be a metric space of finite metric dimension
and let p ∈]0, 1[. Then there exists an integer n > 0 and a Lipschitz embedding
of the space (X, dp) into the Euclidean space (Rn, ‖ ‖).

Proof. – (a) We choose C ∈]0,+∞[ and s ∈]0,+∞[ such that the space (X, d)
is (C, s)-homogeneous. Let τ be an element of ]0, 1[; we let c = 4

τ
, b = c + 4,

A =
√

2, M = C(2b)s and B = 4M . Finally, we distinguish a point 0 in X.
(b) Let us fix j ∈ Z. The space (X, τ−jd) is also (C, s)-homogeneous. Let

Yj be a 1-network of (X, τ−jd); we then have |{y ∈ Yj | τ−jd(y, z) 6 b}| 6 M ,
for any z ∈ Yj . The space (Yj , τ

−jd) thus admits an (M,d)-colouring (see 2.4)
and so there exists a local (τ, A,B, c)-controlled embedding ϕj of the space
(X, τ−jd) into the Euclidean space (RM , ‖ ‖) (see 2.5). By replacing ϕj by
ϕj −ϕj(0) if necessary, we can even assume that ϕj vanishes at 0.

(c) We have thus obtained, for each j ∈ Z, a local (τ, A,B, c)-controlled
embedding ϕj of (X, τ−jd) into (RM , ‖ ‖) that vanishes at 0. Let (vj)j∈Z be a
cyclic base of a Euclidean space (F, ‖ ‖). If the dimension of F is large enough,
then the map f : s→

∑
j∈Z τ

jpϕj(s)⊗ vj is a Lipschitz embedding of the space
(X, dp) into the Euclidean space (RM ⊗ F, ‖ ‖) (see 1.2).

3 Generalised Koch curves

Our construction generalises, as we will see, that of the classical Koch curve
[7]; it is what justifies our terminology.

3.1. Let l > 2 be an integer, η an element of ]0, 1[, ψ an element of [0,π[, K
a compact subset of Rn and a0 and al two distinct points in K.
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We define a Koch chain with length l, scale η, flexibility 6 ψ and mesh
(a0,K, al) in Rn as any family T = (T0, ..., Tl−1) of isometries of the Euclidean
space satisfying the following properties:

(a) For each r = 1, ..., l− 1, the set ηTr(K) (denoted Kr) is contained in K;
(b) we have ηT0(a0) = a0 and ηTl−1(al) = al;
(c) for each r = 1, ..., l − 1, the point ηTr(a0) (denoted ar) is equal to

ηTr−1(al);
(d) for each r = 1, ..., l − 1, we have

(x− ar | y − ar) + ‖x− ar‖‖y − ar‖ cosψ 6 0,

for any x ∈ Kr−1 and y ∈ Kr;
(e) Kr and Kr′ are disjoint, for any r, r′ ∈ {0, ..., l − 1} with |r − r′| > 2.

The sequence (a0,K0, a1,K1, ..., al−1,Kl−1, al) is called the support, the points
a0, ..., al the vertices and the sets K0, ...,Kl−1 the links of the chain T .

Each Koch chain will allow the following construction:

3.2. Let T = (T0, ..., Tl−1) be a Koch chain of length l, scale η, flexibility
6 ψ and mesh (a0,K, al) in Rn.

(a) For each integer j > 1, we denote by Dl
j the set of real numbers t of

the form t =
∑j
i=1 ril

−i with r1, r2, ..., rj ∈ {0, ..., l − 1}. We denote by Dl the
union of the sets Dl

j (for j > 1). For each r = 0, ..., l − 1, we set Sr = ηTr.
(b) For each integer j > 1 and each element t =

∑j
i=1 ril

−i of Dl
j (with

r1, ..., rj ∈ {0, ..., l − 1}), we set fj(t) = Sr1Sr2 ...Srj (a0).
(c) For each pair of integers j, k (with j 6 k), the map fk obviously extends

the map fj (since we have S0(a0) = a0, see 3.1b); we denote by fT the map
from Dl into Rn which is equal to fj on Dl

j , for any integer j > 1; the set
γT = fT (Di) is then called generalised Koch curve with respect to the chain T .

There is an abuse of terminology in calling γT a curve; but we are going
to show that the closure of γT is effectively a curve, and, more precisely, that
the continuous extension of fT to [0, 1] is, for a certain p ∈]0, 1[, a Lipschitz
embedding of ([0, 1], ‖ ‖p) into (Rn, ‖ ‖).

Before showing this, let us describe some examples of Koch chains:

3.3. Let us identify the Euclidean space (R2, ‖ ‖) with C, and let us fix
θ ∈]0, π2 [; we set a0 = 1 + eiθ, a1 = 0, a2 = −ā0 and we denote by K the
triangle with vertices a0, a1 and a2, by K0 the triangle with vertices a0, a0 − 1
and a1, and by K1 the triangle with vertices a1, a2 + 1 and a2. Clearly, there
exists a Koch chain and a unique mesh (a0,K, a2) and having the sequence
(a0,K0, a1,K1, a2) as its support; it is the chain T of length 2, scale (2 cos θ2 )−1

and flexibility 6 2θ in R2.
(a) In particular, for θ = π

3 , the curve γT is the set of points with dyadic
parameter of the classical Koch curve (see [7]).

(b) For θ = π
2 (which we had not allowed ourselves), the flexibility would no

longer be bounded and γT would be the set of points with dyadic parameter of
a Peano curve which fills K.

We are going to construct quite a large class of Koch chains:

3.4. Let n > 1 be an integer and (e1, ..., en) the canonical basis of Rn.
(a) Let θ ∈]0, π4 [; we set S(θ) = {x ∈ Rn | ‖x‖ = tgθ, (x | e1) = 0}; and we

denote by D(θ) the convex hull of S(θ) ∪ {e1,−e1}.
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(b) We say that two points x and y in Zn are adjacent if we have ‖x−y‖ = 1.
(c) Let X be a subset of Zn. A sequence γ = (x0, ..., xl) of distinct points of

X is called a path of length l joining x0 to xl in X if xr−1 and xr are adjacent,
for any r = 1, ..., l.

3.5 Lemma. – Let k1, ..., kn > 0 integers. We set

X =

n∏
i=1

{0, ..., 2ki} and a = 2

n∑
i=1

kiei.

Then there exists a path γ of length 2l joining 0 to a in X, for any integer l
satisfying

∑n
i=1 ki 6 l 6 1

2 [πni=1(2ki + 1)− 1].

Proof. (Induction on
∑n
i=1 ki). – Let k1, ..., kn > 0 be integers and let us sup-

pose that the result is shown for every k′1, ..., k′n with
∑n
i=1 k

′
i <

∑n
i=1 ki.

(a) We will assume k1 > 1 (by permuting the coordinates if necessary) and
set m2 =

∑n
i=2 ki, M2 = 1

2 [
∏n
i=2(2ki + 1) − 1], m1 = m2 + k1 − 1, M1 =

1
2 [(2M2 + 1)(2k1 − 1) − 1] and finally m = m1 + 1, M = M1 + 2M2 + 1. We
denote by X1 (resp. X2, resp. X3) the set of points x of X such that (x | e1) is
less than or equal to 2k1 − 2 (resp. is equal to 2k1 − 1, resp. is equal to 2k1).

(b) Let l be an integer satisfying m 6 l 6 M ; so there exist integers l1 and
l2 with m1 6 l1 6M1, 0 6 l2 6M2 and l = l1 + 2l2 + 1. So there exist (by the
induction hypothesis) a path γ1 of length 2l1 joining 0 and a1 = a− 2e1 in X1,
a point b2 in X2 and a path γ2 of length 2l2 joining a2 = a− e1 and b2 in X2;
so there also exists a path γ3 of length 2l2 joining b3 = b2 + e1 and a in X3. Let
γ be the path obtained by joining the paths γ1, (a1, a2), γ2, (b2, b3) and γ3; it
is the path of length 2l that we were looking for.

3.6. Proposition. – Let p be an element of ]0, 1[, n an integer strictly
larger than 1

p and ψ an element of ] 2π3 ,π[. Then there exists an integer l > 2

and a Koch chain of length l, scale l−p and flexibility 6 ψ in Rn.

Proof. (a) We take θ = ψ
2 −

π
3 . We choose a real number β > 0 such that

the cube [−2β, 2β]n is contained in 1
2D(θ). We choose an even integer l > 2

satisfying 2n(1 +β)lp 6 l 6 βnlpn− 1 (this is possible because we have p < 1 <
pn).
We set η = l−p and we denote by N the integer part of β1p.

(b) We set b = N
∑n
i=1 ei, K = 1

2ηD(θ), a0 = 1
η
e1 and X = {−N, ..., N}n.

A sequence γ = (y0, ..., yq) of distinct points of a subset Y of K will be called
here a trail of length q joining y0 and yq in Y if y0, ..., yq are consecutive vertices
of a Koch chain of scale η, flexibility 6 ψ and mesh (a0,K,−a0).

(c) Let
Y + = {x ∈ K | (x | e1) > N + 1}

and
Y − = {x ∈ K | (x | e1) 6 −(N + 1)}.

Clearly we can join a0 and b′ = b+ e1 by a trail γ+ of length r 6 n
η
− 1 in Y +

(it is for this that we took ψ > 2π
3 ). Likewise we can join −b′ and −a0 by a

trail γ− of length r in Y −. The integer l − 2r − 2 is thus even and satisfies

2nN 6 l − 2r − 2 6 (2N + 1)n − 1.
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So there exists (see Lemma 3.5) a path γ0 of length l − 2r − 2 joining b and
−b in X. Let γ be the sequence obtained by joining the paths γ+, (b′, b), γ0,
(−b,−b′) and γ−; it is a trail of length l joining a0 and −a0 in K, which proves
the Proposition.

Having obtained some examples of Koch chains, we are now going to show
that each chain of length l and scale l−p in Rn defines a Lipschitz embedding of
([0, 1], ‖ ‖p) into (Rn, ‖ ‖).

Here are some preliminary observations:

3.7. (a) Let T be a Koch chain of length l, scale η and mesh (a0,K, al) in
Rn. Let fT be the map from Dl into Rn which it defines (see 3.2). Then the
points fT (0), fT ( 1

l ), ..., fT ( l−1l ), al are the vertices of the chain T .
(b) Let k > 2 be an integer. Then the points

fT (0), fT (l−k), fT (2l−k), ..., fT ((lk − 1)l−k),

al are the vertices of a chain T (k) of length lk, scale ηk, mesh (a0,K, al) and
which satisfies fT (k) = fT (observe that we have Dlk = Dl).

(c) Let x, y ∈ Dl with |x − y| > 1
2l ; then fT (x) and fT (y) belong to non-

consecutive links of the chain T (3) (because we have 1
2l > 2l−3).

(d) The quantity AT = Inf{‖fT (x) − fT (y)‖ | |x − y| > 1
2l} is thus zero.

Furthermore, we denote by Bt the diameter of K.
(e) Let s, t ∈ Dl (with s < t); let j ∈ N such that ]s, t[ do not contain any

element of Dl
j . We set s̄j = lj(s − z) and t̄j = lj(t − z), where z is the largest

element of Dl
j smaller than or equal to s. Then we have

‖fT (s)− fT (t)‖ = l−jp‖fT (s̄j)− fT (t̄j)‖ 6 BT l
−jp.

If, moreover, we have |s − t| > 1
2 l
−(j+1), then we also have ‖fT (s) − fT (t)‖ >

Atl
−jp.

3.8. Proposition. – Let p be an element of ]0, 1[ and let T = (T0, ..., Tl−1)
be a Koch chain of length l, scale l−p, flexibility 6 ψ and mesh (a0,K, al) in
Rn. Let fT be the map from Dl into Rn which it defines (see 3.2).

Then fT is a Lipschitz embedding of (Dl, ‖ ‖p) into (Rn, ‖ ‖). More pre-
cisely, let AT and BT be the quantities defined in 3.6d: we then have

AT |x− y|p sin

(
ψ ∨ π

2

)
6 ‖fT (x)− fT (y)‖ 6 2BT l

p|x− y|p,

for any x, y ∈ Dl.

Proof. – Let x, y ∈ Dl (with x < y) and let j > 0 be the integer satisfying
l−(j+1) < |x− y| 6 l−j . We distinguish two cases:

(a) If ]x, y[ does not contain any element of Dl
j , we have

AT l
−jp 6 ‖fT (x)− fT (y)‖ 6 BT l

−jp

(see 3.6e) and so

AT |x− y|p 6 ‖fT (x)− fT (y)‖ 6 BT l
p|x− y|p.
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(b) Otherwise, ]x, y[ contains a unique element a of Dl
j ; by replacing T with

the reverse chain if necessary, we can assume that we have 1
2 l
−(j+1) < |x− a| 6

l−j and |a− y| 6 l−j ; so we have

‖fT (x)− fT (a)‖ sin

(
ψ ∨ π

2

)
6 ‖fT (x)− fT (y)‖

6 ‖fT (x)− fT (a)‖+ ‖fT (a)− fT (y)‖

(the first inequality comes from the fact that the chain T is of flexibility 6 ψ;
see 3.1d); so we have AT l−jp sin

(
ψ ∨ π2

)
6 ‖fT (x) − fT (y)‖ 6 2BT l

−jp (see
3.6e), which implies that

AT |x− y|p sin

(
ψ ∨ π

2

)
6 ‖fT (x)− fT (y)‖ 6 2BT l

p|x− y|p.

4 Rank of the space ([0, 1]k, ‖ ‖p)

4.1 (a) Let (X, d) be a metric space. We define the rank of (X, d) (denoted
by rg(X, d)) as the smallest integer n > 0 such that there exists a Lipschitz
embedding of (X, d) into the Euclidean space (Rn, ‖ ‖).

(b) Let f be a Lipschitz embedding of (X, d) into the metric space (Y, δ);
we define the distortion of f (denoted by ∆(f)) as the lower bound of the real
numbers λ such that there exists A ∈]0,+∞[ for which we have Ad(x, y) 6
δ(f(x), f(y)) 6 Aeλd(x, y), for any x, y ∈ X.

(c) If n is an integer > rg(X, d), we define the n-distortion of (X, d) (denoted
by ∆n(X, d)) as the lower bound of ∆(f) over every Lipschitz embedding f of
(X, d) into the Euclidean space (Rn, ‖ ‖).

We will not try to evaluate the n-distortion of ([0, 1]k, ‖ ‖p) here; let us
however describe some questions that arise.

4.2 If (X, d) embeds isometrically, i.e. with distortion 0, into an infinite-
dimensional Hilbert space (which is the case for the space ([0, 1]k, ‖ ‖p)), then
we can expect that the n-distortion of (X, d) tends to 0 when n tends to +∞.
Thus Kahane [6] showed, in response to a question by the author, that the
n-distortion of ([0, 1],

√
‖ ‖) is smaller than or equal to 0

(
1
n

)
.

On the other hand, we are going to evaluate quite precisely the rank of
([0, 1]k, ‖ ‖p). Here are first some obvious preliminary remarks:

4.3 (a) Let d and δ be two metrics on a set X. We assume that the identity
is a Lipschitz embedding of (X, d) into (X, δ) (we say in this case that d and δ
are Lipschitz equivalent). Then (X, d) and (X, δ) have the same rank.

(b) Let (X, d) and (Y, δ) be two metric spaces. We equipX×Y with the direct
sum metric d⊕δ : (x, y), (x′, y′)→ d(x, x′)+δ(y, y′). The rank of (X×Y, d⊕δ)
is then smaller than or equal to rg(X, d) + rg(Y, δ).

(c) Let (X, d) be a metric space. We then have Dim(X, d) 6 rg(X, d).
Let us now summarise the results obtained in Section 3:

4.4 Proposition. – Let k > 1 be an integer and p an element of ]0, 1[. Let
n be the smallest integer > 1

p . Then the space ([0, 1]k, ‖ ‖p) is of rank 6 kn.
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Proof. – (a) We have shown, in 3.6, the existence of an integer l > 2 and a
Koch chain of length l, scale l−p and flexibility 6 3π

4 in Rn. As a result, there
exists (see 3.8) a Lipschitz embedding of (Dl, ‖ ‖p) into (Rn, ‖ ‖). Continuously
extending this embedding, we obtain a Lipschitz embedding of ([0, 1], ‖ ‖p) into
(Rn, ‖ ‖). So the space ([0, 1], ‖ ‖p) is of rank 6 n.

(b) Let us denote by d (resp. δ) the metric x, y → ‖x− y‖p on [0, 1]k (resp.
on [0, 1]). The metric d is Lipschitz equivalent to δ ⊕ ... ⊕ δ (k times). The
remark 4.3b thus shows that ([0, 1]k, ‖ ‖p) is of rank 6 nk.

4.5 As a result of 2.2, the metric dimension of ([0, 1]k, ‖ ‖p) is equal to k
p .

Taking into account 4.3c, we see that ([0, 1]k, ‖ ‖p) is of rank > k
p .

The rank of ([0, 1], ‖ ‖p) (for p ∈]0, 1[) is thus the smallest integer > 1
p , if

1
p

is not an integer. We propose to prove that this result remains true even if 1
p

is an integer (different from 1). More generally, we are going to establish that
([0, 1]k, ‖ ‖p) is of rank > k

p for any integer k > 1 and p ∈]0, 1[.
This will result from three lemmas.

4.6. (a) A symmetric kernel d : X2 →]0,+∞[ which is zero on and only on
the diagonal is called a pseudometric on X if there exists a number a ∈ [1,+∞[
such that we have d(x, y) 6 a(d(x, z) + d(z, y)) for any x, y, z ∈ X (when we
want to be more precise, we say that d is an a-pseudometric on X). We then
equip the space (X, d), which we call a pseudometric space, with the topology
generated by the “open” balls with respect to the pseudometric d.

(b) Let (X, d) be a pseudometric space; for each open subset U of (X, d), we
denote by τ(U) the diameter of (U, d), i.e. the quantity Sup{d(u, v) | u, v ∈ U}.
We then define an outer measure µd on X in the following way: for each subset
A of X and each ε > 0, we set

µd,ε(A) = Inf{
∑
i∈N

τ(Ui) | (Ui)i∈N covering of A by open sets of diameter 6 ε}

and
µd(A) = Supε>0µd,ε(A)

(so the measure µd is the outer measure on X obtained by Method II of Rogers
[8] p.27 from the pre-measure τ).

We will say that µd is the Hausdorff measure on (X, d).

4.7 Lemma – Let (X, d) and (Y, δ) be two pseudometric spaces; let A,B ∈
]0,+∞[. Let f be a map from X into Y satisfying Ad(x, x′) 6 δ(f(x), f(x′)) 6
Bd(x, x′) for any x, x′ ∈ X. We then have Aµd(X) 6 µδ(f(X)) 6 Bµd(X).

Proof. When d and δ are metrics, it is a particular case of Theorem 29 in [8].
Moreover, the proof of this theorem clearly remains valid (see [8] p.54) even if
d and δ are not metrics.

4.8 Every power of a metric is a pseudometric; in addition, we can show ([1]
Lemma 1.14) that every pseudometric is Lipschitz equivalent to a power of a
metric.

4.9 Lemma. – Let (X, d) and (Y, δ) be two metric spaces, x0 a point in X
and y0 a point in Y ; let A,B ∈]0,+∞[. We assume that the closed balls of (Y, δ)
are compact and that, for each finite subset F of X containing x0, there exists

11



an (A,B)-Lipschitz embedding gF of (F, d) into (Y, δ) satisfying gF (x0) = y0.
Then there exists an (A,B)-Lipschitz embedding of (X, d) into (Y, δ).

Proof. For each finite subset F of X containing x0, we define a map fF from X
into Y by letting fF (x) = gF (x) if x belongs to F , and fF (x) = y0 otherwise.
We then let f(x) = limF,U fF (x) (for each x ∈ X), where U is an ultrafilter
finer than the filter of inclusion on the set of every finite subsets of X containing
x0 (we observe that fF (x) is, for any F , an element of the closed ball centred
at y0 with radius Bd(x0, x); it is the compactness of this ball which ensures the
existence of f(x)).

The map f is the embedding that we were looking for.

4.10 Let ε ∈]0,+∞[. A subset T of a metric space (X, d) is said to be ε-dense
in (X, d) if, for each x ∈ X, there exists t ∈ T with d(x, t) < ε.

4.11. Lemma. – Let F be an α-separated subset and G an ε-dense sub-
set of a metric space (X, d). Then there exists a map h : F → G satisfying(
1− 2ε

α

)
d(x, y) 6 δ(h(x), h(y)) 6

(
1 + 2ε

α

)
d(x, y) for any x, y ∈ F .

Proof. As G is ε-dense, we can choose, for each x ∈ F , a point h(x) in G with
d(x, h(x)) < ε. Let us fix x, y ∈ F (with x 6= y); we then have:

d(h(x), h(y)) 6 d(x, y) + d(x, h(x)) + d(y, h(y))

6 d(x, y) + 2ε 6

(
1 +

2ε

α

)
d(x, y)

and

d(x, y) 6 d(h(x), h(y)) + d(x, h(x)) + d(y, h(y))

6 d(h(x), h(y)) +
2ε

α
d(x, y).

Hence the map h is the map that we were looking for.

Now, here is the result that we had in sight:

4.12. Proposition. – Let k > 1 be an integer and p an element of ]0, 1[.
Denote by r(k, p) the rank of the metric space ([0, 1]k, ‖ ‖p). We then have
m 6 r(k, p) 6 kn, where m is the smallest integer > k

p , and n the smallest
integer > 1

p .
In particular, the rank of ([0, 1], ‖ ‖p) is the smallest integer > 1

p .

Proof. – (a) We have already shown the inequalities r(k, p) 6 kn (see 4.4) and
r(k, p) > k

p (see 4.5). Hence it remains to establish the inequality r(k, p) > k
p ,

in the case where k
p is an integer.

(b) For that, we are going to assume that there exists an (A,B)-Lipschitz
embedding f of ([0, 2]k, ‖ ‖p) into (Rq, ‖ ‖) (with k

p = q ∈ N) and show that
this leads to a contradiction; this will establish the Proposition.

(c) Let f be the embedding whose existence we assumed in (b). So we have
Aq‖x − y‖k 6 ‖f(x) − f(y)‖q 6 Bq‖x − y‖k, for any x, y ∈ [0, 2]k. Lemma
4.7 (applied to the pseudometrics d : x, y → ‖x − y‖k on [0, 2]k and δ : s, t →
‖s− t‖q on Rq) implies that the set f

([
1
2 ,

3
2

]k) has non-zero Lebesgue measure
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in Rq and so possesses (by the Lebesgue differentiation theorem) a density point
t0 = f(x0).

(d) For each β ∈]0, 12 [ and each x ∈ [−1, 1]k, we set

fβ(x) = β−p(f(x0 + βx)− f(x0)).

For each β ∈]0, 12 [ the map fβ thus defined is an (A,B)-Lipschitz embedding of
([−1, 1]k, ‖ ‖p) into (Rq, ‖ ‖) and we have:

βkλ(fβ([−1, 1]k) ∩ S(0, A))

= λ(f(x0 + β[−1, 1]k) ∩ S(t0, Aβ
p)) > λ(f([0, 2]k) ∩ S(t0, Aβ

p))

(where we denoted by λ the Lebesgue measure on Rq and by S(z, r) the closed
ball centred at z and with radius r in the space (Rq, ‖ ‖)).

(e) As t0 is a density point in f
([

1
2 ,

3
2

]k), the inequality that we established
in (d) shows that we have

lim
β→0

λ(fβ([−1, 1]k) ∩ S(0, A)) = λ(S(0, A)).

Hence, for each ε > 0, we can choose a number β(ε) ∈]0, 12 [ such that Gε =
fβ(ε)([−1, 1]k) ∩ S(0, A) is ε-dense in the space (S(0, A), ‖ ‖).

Moreover, gε = f−1
β(ε) is a

(
1
B ,

1
A

)
-Lipschitz embedding of the space (Gε, ‖ ‖)

into the space ([−1, 1]k, ‖ ‖p).
(f) Let F be a finite subset of S(0, A) containing 0; so there exists α > 0

such that F is α-separated in (S(0, A), ‖ ‖). We fix ε = α
4 . So there exists (by

Lemma 4.11) a
(
1
2 ,

3
2

)
-Lipschitz embedding hF of (F, ‖ ‖) into (Gε, ‖ ‖), and

we can assume hF (0) = 0 (because 0 belongs to Gε). The map gF = gε ◦ hF
is thus a

(
1
2B ,

3
2A

)
-Lipschitz embedding of the space (F, ‖ ‖) into the space

([−1, 1]k, ‖ ‖p), and it satisfies gF (0) = 0.
(g) Hence there exists (by Lemma 4.9) a

(
1
2B ,

3
2A

)
-Lipschitz embedding of

the space (S(0, A), ‖ ‖) into the space ([−1, 1]k, ‖ ‖p), in contradiction with the
fact that the topological dimension of S(0, A) is equal to q > k. This is the
contradiction that we were looking for.

The inequality r
(
1, 12
)
> 2 could have been proved by using the following

result of Besicovitch and Schoenberg:

4.13. [2] Let f be a continuous and injective map from [0, 1] into R2. We
then have Inf{

∑j
i=1‖f(xi)− f(xi−1)‖2} = 0. where the infimum is taken on all

the partitions 0 = x0 < x1 < x2 < ... < xj−1 < xj = 1 of the segment [0, 1].
Likewise the inequality r

(
1, 1q

)
> q could have been established by using

an extension (due to Y. Katznelson, not published) of 4.13 to Jordan curves
f : [0, 1]→ Rq, the q-variation then replacing the 2-variation.
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APPENDIX. A curve leading to an embedding of ([0, 1],
√
‖ ‖) into R3:

Let θ = Arctg 2
3 ; we consider a Koch chain T of length 144, scale 1

12 , flexibility
6 π

2 +2θ and mesh (a0, D(θ), a144) in R3, whose support (a0,K0, a1, ..., a143,K143, a144)
is given by the following diagram:

A crude calculation (by hand) shows that there exists a real number A > 0
such that we have A

√
|s− t| 6 ‖fT (s) − fT (t)‖ 6 2184A

√
|s− t|, for any

s, t ∈ [0, 1].
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