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INTRODUCTION.
Until recently, the goal of Probability Calculus has been the study of random
numbers or geometric probability, the study of a random point, defined by its
coordinates, in a Euclidean space. The development of Probability Calculus
and its applications calls for the study of more general elements: random series,
vectors, functions, curves, transformations,... M. Fréchet [M. Fréchet, I, p.215-
310](1) showed the necessity of a systematic study of abstract random elements;
we will not go back to this point.

The set of realisations of an element X constitutes a space X of X and each
realisation of X is a point of X . The definition of abstract random elements
implies the existence of a measure or probability on X ; we first need to introduce
measurable sets forming a σ-algebra F : the elements of F are subsets of X
and X itself is part of the σ-algebra F ; then the measure µ is such that for all
A ∈ F , we have

µ(A) ≧ 0, µ(X ) = 1,
∑
i

µ(Ai) = µ

∑
i

Ai


if the countable collection Ai is pairwise disjoint. The generalisation of the no-
tion of probability laws is then immediate: it is the collection of the probabilities
of all the elements of F . The notions of central values, dispersion, etc. imply
that of “neighbourhood”; so there must be a topology on X . Every metric
defines a topology but there can be a topology in a space without a metric;
however, we will restrict ourselves, like M. Fréchet, to metric spaces.

We can then, as M. Fréchet [M. Fréchet, I] and S. Doss [S. Doss, I] did, gener-
alise the notion of mathematical expectation; however, if we want to generalise
mathematical expectation as a linear operator, addition needs to be defined on
X , and so X needs to be vectorial; we can then directly generalise the classical

1This is not authoritative translation, and I do not claim any credit for the mathematical
content of this document. Please send any corrections to junhyung.park@tuebingen.mpg.de.

(1)The square brackets [ ] can be found in the bibliography, page 65.
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law of large numbers. Let us note that, considering the case where X is a met-
ric space but not linear, S. Doss [S. Doss, I] defines the analogue of 1

n

∑n
i=1 Xi

as any element Zn, if it exists, such that

(Zn, λ) ≦
1

n

n∑
i=1

(Xi, λ)

for any λ, where (a, b) denotes the distance between a and b.
He thus obtains a law of large numbers, but, except in a very particular case,

he has neither an existence result nor a uniqueness result. So we see that we
are led to consider metric vector spaces; more precisely, we will limit ourselves
to Banach spaces, that is to say, to complete metric vector spaces in which the
metric is defined through a norm. The linear functionals(2), real or complex,
relative to X will be denoted x∗; they form the dual space X ∗ of X which is
itself a Banach space.

We will assume that the measure defined on X is such that all linear func-
tionals are measurable; we then say that the measure is an L-measure.

Under these conditions, we will study the definition and existence of a math-
ematical expectation (Chapter I), and we will establish laws of large numbers
in expectation or almost surely (a.s.) with respect to the weak convergence
and also with respect to the strong convergence (Chapter II). Chapter III is
dedicated to the definition and study of the characteristic function of a random
element, and finally in Chapter IV, we will define and study random Laplacian
elements.

The main results shown in this Thesis are summarised in the following notes:

É. Mourier, C. R. Acad. Sc., vol.229,1949, p.1300; vol.231, 1950, p.28;
vol.232, 1951, p.923; vol.236, 1953, p.575.

I am happy to express here my respectful gratitude to Professor G. Darmois
for the interest he has shown in this work, his observations and his very useful
advice.

I equally address my strong gratitude to M. Fréchet whose recent works
provided me with the subject of this study, who always takes an interest in my
research, and from whom I learnt through numerous and instructive meetings.

Chapter I.
Definition and Study of a Mathematical Expectation

in the case of an L-Measure.

In Probability Calculus, one defines the mathematical expectation of numerical
random variables, but for a long time, in various applications, one has defined,
and frequently uses, the “mean value” of elements which are not numbers. For
example, nothing is more familiar to an artilleryman than the “average point”
which he defines by the property that the coordinates of this point are the
mathematical expectation of the corresponding coordinates; that is to say, if we

(2)In all that follows, “linear” implies additive and continuous.
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denote by Xi(M) the ith coordinate of a point M, the average point E(M) is
defined by the relation

Xi[E(M)] = E[Xi(M)] for all i.

Departing from the known notion of mathematical expectation for a numerical
random variable, we generalise in an analogous way [É. Mourier, I] the defi-
nition of the mathematical expectation of a random element X whose values
belong to some Banach space X , which we will denote by X ∈ X . Just as in
the preceding example, the average point will only be defined when the math-
ematical expectation of each Xi(M) exists, and likewise we will only define the
mathematical expectation E(X) of X ∈ X if E[x∗(X)] exists for each x∗ ∈ X ∗.

Definition. – The mathematical expectation E(X) of X ∈ X , if it exists,
is the element of X such that

x∗[E(X)] = E[x∗(X)] for every x∗ ∈ X ∗.

Let us note that E[x∗(X)] is a mathematical expectation of an ordinary
numerical random variable, so E(X), if it exists, is unique; indeed the knowledge
of x∗[E(X)] for every x∗ determines E(X) [E. Hille, I, p.22].

This definition is equivalent ot that of the Pettis integral [Pettis I. p. 277-
304].

Remark. – Given a set, we can sometimes choose different norms such that
the space defined with either of these norms is a Banach space. Changing the
norm can have the effect of modifying the class of (continuous) linear functionals
which can be enlarged or shrunk (but there are always additive functions which
are linear in all cases).

It is interesting to know whether E(X), which exists with one norm, also
exists with another, and if these mathematical expectations are the same. In
fact, in concrete applications, the choice of the norm is in general arbitrary.

Let ∥x∥1 and ∥x∥2 be two norms; if we assume that there exist two numbers
a and b such that

(1) 0 < a <
∥x∥1
∥x∥2

< b,

the linear functionals are the same [E. Hille, I, Theorem 2.13.8] with ∥x∥1 and
with ∥x∥2 so the mathematical expectation, if it exists in one case, exists in the
other and with the same value.

The condition (1) can be interpreted qualitatively and is necessarily satisfied
in the case of a finite-dimensional number (alongside the theorem E[U(X)]=U[E(X)],
cf. page 5).

Property 1. – If E(X) exists, E(αX), where α is a fixed number, exists and
equals αE(X)

x∗[E(αX)] = E[x∗(αX)] = E[αx∗(X)] = αE[x∗(X)]

= αx∗[E(X)] = x∗[αE(X)] for every x∗,

so E(αX) exists and E(αX)= αE(X).
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Property 2. – If X is surely or almost surely equal to a fixed element x, E(X)
exists and is equal to x.

x∗[E(X)] = E[x∗(X)] = x∗(x) for every x∗;

so E(X) exists and is equal to x.

Property 3. – If X is surely or almost surely equal to a fixed element x, if
A is a numerical random variable and if E(A) exists, then E[AX] exists and is
equal to xE[A].

x∗[E(AX)] = E[x∗(AX)] = E[Ax∗(X)] = x∗(x)[E(A)]
= x∗[xE(A)] for every x∗,

so E(AX) exists and is equal to x[E(A)].

Property 4. – If X and Y are defined on the same X and if E(X) and E(Y)
exist, E(X + Y) exists and we have:

E(X + Y) = E(X) + E(Y).

Lemma. – Let us recall [Banach, I, p.181] that if X and X1 are Banach
spaces and x ∈ X and y ∈ X1, if we denote by X ×X1 the space of all ordered
couples x, y where we define addition and multiplication by a scalar h by letting:

(x, y) + (x1, y1) = (x+ x1, y + y1),

h(x, y) = (hx, hy)

and the norm such that
(1)
lim
n→∞

xn = x0 and lim
n→∞

yn = y0 is equivalent to lim
n→∞

∥(xn, yn)− (x0, y0)∥ = 0,

then X ×X1 is a Banach space called the product of X and X1. (1) is fulfilled
if, in particular, we take as the norm of z = (x, y) one of the expressions

∥z∥ = [∥x∥p + ∥y∥p]
1
p

or
∥z∥ = max[∥x∥, ∥y∥];

there are other possible norms, but by choosing any norm satisfying (1), we will
always obtain isomorphic spaces. The product X × X is called the square of
X and is denoted by X 2.

We likewise define the product X1 × X2 × ...× Xn.
The product of a finite number of separable spaces(3) is separable.

Proof of property 4. – Let

X ∈ X , Y ∈ Y ≡ X .

We assume that E(X) and E(Y) exist.

(3)We recall that a Banach space X is separable if there exists a countable sequence S of
points of X such that every point of X is the limit of a partial sequence of S.
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Let
Z = X × Y and (X,Y ) = Z.

We have a measure on Z , it induces a measure on X and another on Y that we
assume are L-measures [since E(X) and E(Y) exist]. A linear functional applied
to X + Y is of the form

x∗(X + Y) = x∗(X) + x∗(Y).

But x∗(X) and y∗(Y) [in other words, x∗(Y)] are measurable on Z , so x∗(X+Y)
is also measurable on Z . But the measure on Z induces a measure on the space
X ′ (identical to X ) of X + Y, and the latter is thus an L-measure. We can
thus find out whether X + Y has a mathematical expectation E(X + Y), this
mathematical expectation has to be such that

x∗[E(X + Y)] = E[x∗(X + Y)] = E[x∗(X) + x∗(Y)],

= E[x∗(X)] + E[x∗(Y)],

= x∗[E(X)] + x∗[E(Y)],
= x∗[E(X) + E(Y)],

and this holds for every x∗ ∈ X ∗, so: E(X+Y) exists and E(X+Y) = E(X) +
E(Y).

Theorem. – Let U be a linear operator defined in the Banach space X and
whose codomain is a Banach space X1; letting X ∈ X , if E(X) exists, E[U(X)]
exists and is equal to U[E(X)].

Lemma(4). – Let X and X1 be two Banach spaces, y = U(x) a linear
operator defined in X whose codomain is contained in X1 and x∗ and y∗ linear
functionals defined in X and X1 respectively. Let us consider the expression
y∗[U(x)], where y∗ is any linear functional defined on X1. This expression can
be regarded as a functional defined on X .

Let us set
x∗(x) = y∗[U(x)];

thus defined, the functional x∗ is additive and continuous, because we have

|x∗(x)| = |y∗[U(x)]| ≤ ∥y∗∥ · ∥U∥ · ∥x∥,

whence
∥x∗∥ ≤ ∥y∗∥ · ∥U∥.

Proof of theorem. – By definition,

x∗[E(X)] = E[x∗(X)];

E[X] exists, so E[x∗(X)] also exists for each x∗; by the lemma, for each y∗[U(X)]
there is a x∗(X) such that:

y∗[U(X)] = x∗(X),

(4)Banach, loc. cit., p.99.
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so E[y∗[U(X)]] exists and

E[y∗[U(X)] = E[x∗(X)],

y∗[E[U(X)]] = E[y∗[U(X)]] = E[x∗(X)] = x∗[E(X)],

= y∗[U[E(X)]]

and this holds for every y∗ ∈ X ∗
1 so:

E[U(X)] = U[E(X)].

Property 5. – If ∥X∥ is measurable, if E[∥X∥] < +∞ and if E(X) exists, we
have:

∥E(X)∥ ≤ E[∥X∥].

There exists [Banach, I, p.99], [E. Hille, I, Theorem 2.9.3] a linear functional
x∗
0 ∈ X ∗ such that:

∥x∗
0∥ = 1,(α)

x∗
0[E(X)] = ∥E(X)∥.(β)

But

x∗
0[E(X)] = E[x∗

0(X)],

|x∗
0[E(X)]| = |E[x∗

0(X)]| ≤ E|x∗
0(X)| ≤ E[∥x∗

0∥ · ∥X∥],
∥E(X)∥ ≤ E[∥X∥].

The examination of this property poses the problem of studying the measura-
bility of ∥X∥.

Theorem. – With an L-measure, if X is separable, ∥x∥ is measurable.

Indeed, an L-measure means that x is weakly Pettis-measurable, but X
being separable means that x is Bochner-measurable [Pettis, I, p.279], that is
to say, there exists a sequence of step functions(5) λn(x) such that, for a fixed
x, save for a set of zero measure,

∥x− λn(x)∥ → 0;

this implies
∥λn(x)∥ → ∥x∥;

but ∥λn(x)∥ is measurable, hence so is ∥x∥. More generally, every continuous
numerical function f(x) of x is measurable; every function f with values in a
Banach space and continuous will be Bochner-measurable.

Theorem. – With an L-measure, if X is separable and reflexive and if
E[∥X∥] = m < +∞, then E(X) exists.

(5)“Step functions” are constant on each of a finite number of disjoint measurable sets whose
sum is the entire space (see Pettis).
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X is separable, so ∥X∥ is measurable (preceding theorem). X being sepa-
rable and reflexive implies that X ∗ is separable. Let {x∗

n} be a countable dense
sequence in X ∗; for E(X) = y to exist, it is necessary and sufficient that

(1) x∗
n(y) = E[x∗

n(X)] for all n.

Necessity is obvious. For sufficiency, if, for every n, E[x∗
n(X)] exists, E[x∗(X)]

exists for every x∗; indeed:

E[x∗(X)] = E[x∗
n(X)] + E[(x∗ − x∗

n)(X)],

and if ∥x∗ − x∗
n∥ ≤ ε:

|E[(x∗ − x∗
n)(X)] ≤ E[∥x∗ − x∗

n∥∥X∥] ≤ mε.

So if y satisfies (1):

|E[x∗(X)]− x∗(y)| ≤ mε+ |x∗
n(y)− x∗(y)|,

≤ ε(m+ ∥y∥).

Here [E. Hille, I, p.21], a necessary and sufficient condition for (1) to have a
solution y such that ∥y∥ ≤ M is that, for every y∗ of the form

y∗ =

k∑
n=1

αnx
∗
n,

we have ∣∣∣∣∣∣
k∑

n=1

αnE[x∗
n(X)]

∣∣∣∣∣∣ ≤ M · ∥y∗∥,

that is to say,
|E[y∗(X)]| ≤ M · ∥y∗∥.

Now we have
|E[y∗(X)]| ≤ E[∥y∗∥ · ∥X∥] ≤ ∥y∗∥m.

In Chapter II, this theorem will be extended in the sense that the condition
of X being reflexive will be dropped. We will then obtain this theorem as a
consequence of the strong law of large numbers. It was, however, interesting to
obtain a sufficient condition of the existence of E(X) at this stage.

Comparison with Fréchet’s mathematical expectation

Fréchet’s definition. – M. Fréchet [M. Fréchet, II] gave a constructive defini-
tion of the mathematical expectation of a random element. This mathematical
expectation exists if two conditions are met. The first is about the measure.
The measure has to satisfy a certain condition F, and if it does, we will say it
is an F-measure; this condition is that, for any ε > 0, we can find a finite or
countable number of sets e1, ..., ek, ... such that:
α.
∑

k ek = X ;
β. The ek are pairwise disjoint and each ek is measurable;
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γ. For every ek, the variation of x, when x varies in ek, stays below ε in
norm, that is to say, the diameter of each ek is smaller than ε.

This condition implies that the space X is separable; and conversely, if X
is separable, such a decomposition is possible. The condition γ was generalised
by Fréchet himself and by Shafik Doss [S.Doss, I] and replaced by:

γ′. For every ek of finite measure m(ek), the variation of x, as x varies in
ek, stays below ε in norm, that is to say, the diameter of each ek such that
m(ek) > 0 is < ε, which is equivalent to saying that X is almost surely in a
separable subset X1 of X .

The second condition, condition F’, for the existence of the mathematical
expectation, is that there exists a value of ε, a choice of the ek for this ε and a
choice of ξk in ek such that:∑

k

∥ξk∥m(ek) < +∞.

This definition of the mathematical expectation is equivalent to the definition
of integral of a function with values in a Banach space, it corresponds to the
Bochner integral [Bochner, I], while the definition we gave corresponds to the
Pettis integral [Pettis, I, p.277] which includes that of Bochner.

Theorem 1. – Every F-measure is an L-measure; more generally, if f(x) is
a continuous and real numerical function, the set A of the x for which f(x) < a
(for some real number a) is measurable (with the F-measure assumed to be
given).

1◦ A is open. – If x0 ∈ A , we can find a sphere with centre x0 completely
contained in A ; indeed, x0 ∈ A implies that a− f(x0) > 0.

Let d = a−f(x0). Since f is continuous, we can find η such that ∥x−x0∥ < η
implies |f(x)−f(x0)| < d

2 , so the sphere with centre x0 and radius η is included
in A .

2◦ A is F-measurable. – Let εn = 1
n , and let enk be the ek for ε = εn; let us

denote by e′nk the enk which are contained in A , and by e′′nk the others.
Let An be the sum of the e′nk ,

An ⊂ A .

Let Bn =
∑n

i=1 Ai (the union of the Ai),

Bn ⊂ Bn+1.

An is F-measurable, hence so is Bn; denote by (e′′) the set of all the enk , if
they exist, which are of zero measure and have at least one point inside A and
at least one point outside A ; there are at most countably many of them, and
their union ē is thus of zero measure.

Let us then set
A ′ = A − A ē (A ′ ⊂ A ).

If x0 ∈ A ′, x0 belongs to all the Bn as soon as n is larger than some number;
indeed: for every n, there is a k, say kn, such that x0 ∈ enkn

, then if n is large
enough, every enkn

is an e′nk because if x varies in enkn
,

∥x− x0∥ ≤ εn =
1

n
;
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let η be the radius of a sphere with centre x0 and completely contained in A
(we saw that such an η > 0 exists); if 1

n < η, enkn
is contained in the sphere, so

contained in A , and hence it is an e′nk . So

A ′ ⊂ B = limBn

(since every x ∈ A ′ is ∈ Bn for large enough n).

Bn =

n∑
i=1

Ai ⊂ A ,

so
A ′ ⊂ B = limBn ⊂ A ,

since A −A ′ is of zero measure, A −B is of zero measure. As B is measurable,
A is also measurable, and m(A ) = m(B).

This theorem can be immediately extended to complex functions f(x) which
are measurable if the real and imaginary parts are separately measurable.

The x∗ are continuous numerical functions, so every F-measure is an L-
measure.

Let us remark, moreover, that ∥x∥ is also a continuous numerical function,
so ∥x∥ is F-measurable. In the case of an L-measure which is also an F-measure,
∥x∥ is L-measurable; which we already knew, (c.f. page 6), because then X is
separable. In the case of an F-measure, F’ is a sufficient condition for E[∥x∥] to
exist; it is also a necessary condition [M. Fréchet, II, p.494]. With an L-measure,
we saw (page 6) that if X is not only separable but also reflexive, then X ∗ is
separable, and the existence of E[∥X∥] = m implies the existence of E(X).

Theorem 2. – If we consider an L-measure which is an F-measure satisfy-
ing F’, the mathematical expectation of X exists and is equal to the mathematical
expectation in the sense of Fréchet.

Let EF(X) be the mathematical expectation of X in the sense of Fréchet,

EF(X) = lim
ε→0

∑
k

m(ek)ξk;

we have ∑
k

m(ek)∥ξk∥ < +∞.

Let x∗ be any linear functional (hence bounded):

x∗[EF(X)] = x∗

lim∑
k

m(ek)ξk

 ,

= lim

∑
k

m(ek)x
∗(ξk)

 ,

= E[x∗(X)].

As a consequence, E[x∗(X)] exists and there exists an element EF(X) such that

x∗[EF(X)] = E[x∗(X)].

9



So E(X) exists and:
E(X) = EF(X).

Chapter II.
Addition of Random Elements.

I. – Preliminaries.

We will always consider random elements X whose values belong to a Banach
space X and such that for every linear functional – that is to say, additive and
continuous, and hence bounded – x∗, x∗(X) is measurable; we are now going
to study the problem of the addition of “independent” random elements, or as
we will say, “strictly stationary” random elements. We must thus define these
terms; we will first recall the definition and some properties of the product
space.

Product space. – If A and B are some sets (not necessarily subsets of the
same space), the product A×B is the set of all the ordered couples x, y, where
x ∈ A and y ∈ B.

We defined (Chapter I, page 4) the product of two spaces X1 and X2, in
particular the product of two Banach spaces.

We likewise define the product of a finite number of spaces X1×X2×...×Xn,
and, in particular, the product of a finite number of Banach spaces. The product
of a finite number of separable spaces is separable.

Let X1,X2, ...,Xn be Banach spaces, and let X = X1×X2× ...×Xn, and
denote by X ∗

1 , ...,X ∗
n ,X ∗ the dual spaces of X1,X2, ...,Xn,X respectively.

The spaces X ∗ and X ∗
1 × ... × X ∗

n are isomorphic [Banach, I, p.192]. In
particular, the dual of X 2 is isomorphic to (X ∗)2.

If, in addition to the spaces X1 and X2, we are given two σ-algebras F1 and
F2 of subsets of X1 and X2 respectively, we denote by F1 × F2 the σ-algebra
of subsets of X1 × X2 generated by all the sets of the form A1 × A2, where
A1 ∈ F1 and A2 ∈ F2.

The measurable space (X1×X2,F1×F2) is the product of two measurable
spaces (X1,F1) and (X2,F2).

If µ1 and µ2 are two measures(6) defined on F1 and F2 respectively, there
exists a unique measure λ such that, for every set A1 ×A2 ∈ F1 × F2:

λ(A1 ×A2) = µ1(A1)× µ(A2).

λ is called the product of the measures µ1 and µ2, and we denote it by:

λ = µ1 × µ2.

Independent random elements. – In the classical theory of Probability
Calculus, we say that two numerical random variables X1 and X2 are indepen-
dent if, for any x1 and x2:

Pr[X1 < x1;X2 < x2] = Pr[X1 < x1]× Pr[X2 < x2],

(6)We will consider measures which are probability measures, that is to say, such that µ(X ) =
1. The theorem is true if µ1 and µ2 are any “σ-finite” measures [P.R.Halmos, I, p.144].

10



which is equivalent to saying that the events X1 < x1 and X2 < x2 are inde-
pendent for any x1 and x2, that is to say, that the probability that X2 < x2 is
not modified by the knowledge that the event X1 < x1 is realised, or put yet
another way, that Pr[X2 < x2/X1 < x1] = Pr[X2 < x2].

Let us now consider random elements X1 and X2 taking values in Banach
spaces X1 and X2 respectively. We say again that these random elements are
independent if the fact that one has information on the values taken by one of
them does not modify the probability law of the second. Without studying when
and how it will be possible to define conditional probabilities, the immediate
generalisation of the definition of independence of two random variables gives a
definition of random elements.

Let µ1,µ2, λ be measures defined on F1, F2 and F1 ×F2 respectively, and
such that

Pr[X1 ∈ A1] = µ1(A1) for every A1 ∈ F1,

Pr[X2 ∈ A2] = µ2(A2) for every A2 ∈ F2,

Pr[X1 ∈ A1;X2 ∈ A2] = λ(A1 × A2).

Definition. – Two random elements X1 and X2 are independent if, for any

A1 ∈ F1 and A2 ∈ F2:

Pr[X1 ∈ A1;X2 ∈ A2] = Pr[X1 ∈ A1]× Pr[X2 ∈ A2]

or
λ(A1 × A2) = µ1(A1)× µ2(A2),

that is to say, if, in the product space, the measure is the product of the mea-
sures.

The definition immediately extends to any number of random elements:
X1,X2, ...,Xn are mutually independent if

λ[A1×A2× ...×An] = µ!(A1)× ...×µn(An), for A1× ...×An ∈ F1× ...×Fn.

Strictly stationary sequence. – By analogy with the case of random vari-
ables, we will say that random elements Xn form a strictly stationary sequence
if, for any positive integer s, any integers n1, n2, ..., ns and any integer h, the
probability law of the random element Xn1+h,Xn2+h, ...,Xns+h does not depend
on h.

II. – Strong law of large numbers with respect to
weak convergence.

Theorem 1. – If X ∗ is separable, if X1,X2, ...,Xi, ... is an infinite sequence of
mutually independent random elements in X with the same law, if E[∥Xi∥] =
M < +∞(7) and if E[Xi] exists, – we can then, without loss of generality, assume
E[Xi] = 0 –

Yn =
1

n

n∑
i=1

Xi

(7)X ∗ being separable means X is separable and, as a consequence, ∥X∥ is measurable.

11



converges weakly almost surely to 0 when n converges to infinity.

As X ∗ is separable, let {x∗
k} be a dense sequence in X ∗:

x∗
k(Yn) =

1

n

n∑
i=1

x∗
k(Xi);

x∗
k(Xi) is a numerical random variable with zero mathematical expectation; in

fact, just from the definition:

E[x∗
k(Xi)] = x∗

k[E(Xi)].

But E(Xi) = 0, so
x∗
k[E(Xi)] = x∗

k(0) = 0,

so
1

n

n∑
i=1

x∗
k(Xi) → 0

almost surely for any given k (classical law of large numbers).
So it is almost sure that for every k, x∗

k(Yn) converges to zero.
If x∗ is any linear functional in X ∗, we have

x∗ = x∗
k + y∗k

and k can be chosen such that ∥y∗k∥ is as small as we want, since X ∗ is separable.

x∗(Yn) = x∗
k(Yn) + y∗k(Yn),

|x∗(Yn)| ≤ |x∗
k(Yn) + ∥y∗k∥ · ∥Yn∥.

But here,

∥Yn∥ ≤ 1

n

n∑
i=1

∥Xi∥

and:
1

n

n∑
i=1

∥Xi∥ converges almost surely to E[∥Xi∥] = M

(the classical law of large numbers).
Hence, on an event of probability 1,

|x∗(Yn)| ≤ |x∗
k(Yn) + ∥x∗ − x∗

k∥ · (M + ε),

for any given ε > 0. It suffices to take k such that

∥x∗ − x∗
k∥ <

ε

2M

and then n large enough such that

|x∗
k(Yn)| <

ε

2

to have
|x∗(Yn) ≤ ε, so x∗(Yn) → 0,

12



so Yn converges weakly almost surely to 0.

Theorem 2. – If X is separable and reflexive, if ...,X1, ...,Xi, ... form a
strictly stationary infinite sequence in two directions – which contains the par-
ticular case where Xi are independent and identically distributed – if E[∥Xi∥] <
+∞ – and so E(Xi) exists – :

Yn =
1

n

n∑
i=1

Xi

converges weakly almost surely to a limit Y as n converges to infinity.

For every given x∗, the sequence of numerical random variables x∗(Xi) is
stationary and E|x∗(Xi)| exists, because

|x∗(Xi)| ≤ ∥x∗∥ · ∥Xi∥

and by the hypothesis that E[∥Xi∥] exists; so, by Birkhoff’s ergodicity theorem,

1

n

n∑
i=1

x∗(Xi) = x∗

 1

n

n∑
i=1

Xi

 = x∗(Yn)

converges almost surely to a limit L (x∗).
On the other hand,

∥Yn∥ ≤ 1

n

n∑
i=1

∥Xi∥.

The sequence of random variables ∥Xi∥ is stationary, and E[∥Xi∥] exists so
1
n

∑n
i=1∥Xi∥ converges almost surely to a limit, so almost surely stays bounded;

so on almost every outcome u, ∥Yn∥ stays bounded.
As X is separable and reflexive, so is X ∗; let {x∗

j} be a dense countable
sequence in X ∗; according to above, it is almost sure that all the x∗

j (Yn) con-
verges to a limit L (x∗

j ).
Let x∗ be arbitrary in X ∗; there exists x∗

j such that ∥x∗ −x∗
j∥ < ε; we have

(1) x∗(Yn) = x∗
j (Yn) + [x∗ − x∗

j ](Yn).

Save for an event of probability zero, x∗
j (Yn) has a limit, for any j, and ∥Yn∥

is bounded, independently of j; as

|[x∗ − x∗
j ](Yn)| ≤ ε∥Yn∥

and as ε can be arbitrarily small, x∗(Yn) converges.
So it is almost sure that all the x∗(Yn) simultaneously has a limit L (x∗). To

prove that Yn converges weakly almost surely, we need to show moreover that
there exists a y ∈ X , which is random according to the outcome considered,
such that

x∗(y) = L (x∗) for every x∗.

But for the outcome in consideration [L (x∗) depends on this outcome],
L (x∗) is an additive functional of x∗ on X ∗, which is obvious. It is, moreover,
a continuous functional; to show this, we need to prove that

|L (x∗)| → 0 if ∥x∗∥ → 0.

13



This is true if x∗ is an x∗
j , because:

|L (x∗
j )| = lim

n→∞
|x∗

j (Yn)| ≤ lim sup
n→∞

|x∗
j (Yn)|

≤ ∥x∗
j∥ lim sup

n→∞
∥Yn∥

and we saw that lim sup∥Yn∥ is bounded, independently of j.
For an arbitrary x∗, we have

|L (x∗)| ≤ lim sup
n

|x∗
j (Yn)|+ ε∥Yn∥,

by (1).
We just saw that lim sup|x∗

j (yn)| converges to zero if ∥x∗
j∥ → 0, which is the

case if ∥x∗∥ → 0; as ε was arbitrarily small, L (x∗) → 0 as ∥x∗∥ → 0.
So L (x∗) is a linear functional on X ∗ and then as X is reflexive, for every

linear functional L (x∗) on X ∗ there exists a y ∈ X such that

L (x∗) = x∗(y) for every x∗,

so Yn converges almost surely weakly to a limit Y.

Remark. – We saw that when the Xi are independent, L (x∗) = E[x∗(Xi)]
for a given x∗ is a fixed number; but when Xi form some stationary sequence
for a given x∗, L (x∗) is a random variable.

III. – Study of an auxiliary space
α

X .

Let X be any Banach space. Let us consider random elements X, taking
their values in X , such that x∗(X) is measurable for any x∗ – that is to say, the
random elements are defined by an L-measure on X – additionally satisfying
the condition Cα:

Condition Cα. – ∥X∥ is measurable, and for a given real number α ≥ 1,
E(∥X∥α) < +∞ (which implies that X is a random element in the proper sense).

We associate to X the space
α

X defined in the following way:
Every random element X whose values belong to a space X satisfying the

above conditions will be considered as a point denoted by the same letter X

with the letter a on top:
α

X, of a normed space
α

X , by letting:

(1)
∥∥∥∥α

X
∥∥∥∥ = [E(∥X∥α)] 1

α .

The zero element of
α

X is
α

0 corresponding to X almost surely equal to 0.
Addition and multiplication by a scalar will be defined in

α

X in the following
way:

1◦ If k is a number and if X defines
α

X, kX defines k
α

X.

2◦ If X1 and X2 define
α

X1 and
α

X2 respectively, X1 + X2 defines
α

X1 +
α

X2.
As X is a Banach space, kX and X1 + X2 are well-defined.

14



Finally,
α

X will be metrised by letting

d(
α

X1,
α

X2) =

∥∥∥∥α

X1 −
α

X2

∥∥∥∥ .
With this definition,

α

X is hence vectorial and metric, and we will see that
(1) does constitute a norm; indeed:

1◦
∥∥∥∥α

X
∥∥∥∥ is a positive real number (because, of course, it is the positive value

that will be taken in [E(∥X∥α)] 1
α );

2◦
∥∥∥∥α

X
∥∥∥∥ = 0 if and only if ∥X∥ = 0 almost surely, that is to say, if X = 0

almost surely, so if
α

X=
α

0;

3◦
∥∥∥∥k α

X
∥∥∥∥ = [E(∥kX∥α)] 1

α = |k|[E(∥X∥α)] 1
α = |k| ·

∥∥∥∥α

X
∥∥∥∥;

4◦
∥∥∥∥α

X1 +
α

X2

∥∥∥∥ ≤
∥∥∥∥α

X1

∥∥∥∥+ ∥∥∥∥α

X2

∥∥∥∥, because

∥∥∥∥α

X1 +
α

X2

∥∥∥∥ = [E(∥X1 + X2∥α)]
1
α ;

here,
∥X1 + X2∥ ≤ ∥X1∥+ ∥X2∥,

so
E[∥X1 + X2∥] ≤ E[∥X1∥] + E[∥X2∥]

and so

(E[∥X1 + X2∥α])
1
α ≤ (E[∥X1∥α])

1
α + (E[∥X2∥α])

1
α [M.Fréchet, III].

Finally,
α

X is complete, that is to say, that if we have sequence of
α

Xn satis-
fying the Cauchy condition:

(2)
∥∥∥∥α

Xn+p −
α

Xn

∥∥∥∥ = [E(∥Xn+p − Xn∥α)]
1
α → 0, with

1

n

uniformly in p, there exists an
α

X in
α

X such that∥∥∥∥α

Xn −
α

X
∥∥∥∥→ 0.

In the course of the proof, we will use the following lemma:

Fatou’s Lemma. – If numerical random variables Xn are positive or zero,
if Y = lim infn→+∞ Xn and if lim infn→+∞ E(Xn) = M < +∞, E(Y) exists and
is ≤ M [P.R.Halmos, I, p.113].

1◦ Construction of
α

X. – Let sk be numbers such that

sk > 0,
∑
k

sk < +∞
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and εk positive numbers such that∑
k

εk

sαk
< +∞.

By virtue of (2), we can define a sequence of increasing integers nk such that

(3) E(∥Xnk+p −Xnk
∥α) < εk for all p,

in particular,
E(∥Xnk+1 − Xnk

∥α) < εk,

and by Bienaymé’s inequality,

Pr(∥Xnk+1 − Xnk
∥ < sk) > 1− εk

sαk
.

By the Borel-Cantelli theorem, almost surely, the events

∥Xnk+1 − Xnk
∥ < sk

are realised for all sufficiently large values of k (because
∑

k
εk

sαk
< +∞).

As X is complete and
∑

k sk < +∞, Xnk
has a limit X as k → +∞; we

have
∥Xnk

∥ → ∥X∥.

The E(∥Xnk
∥α) are bounded, because the

α

Xn are bounded, so, by Fatou’s
lemma, E(∥X∥α) < +∞; moreover, x∗(X) is the almost sure limit of x∗(Xnk

),

so x∗(X) is measurable. So X defines an
α

X in
α

X .
2◦ By passing to the limit in (3) (p → +∞), we have (by Fatou’s lemma),

(4) E(∥X − Xnk
∥α) < εk or

∥∥∥∥α

X −
α

Xnk

∥∥∥∥ ≤ (εk)
1
α .

Studying
∥∥∥∥α

Xn −
α

X
∥∥∥∥, we have

∥∥∥∥α

Xn −
α

X
∥∥∥∥ ≤

∥∥∥∥α

Xn −
α

Xnk

∥∥∥∥+ ∥∥∥∥α

Xnk
−

α

X
∥∥∥∥ .

Let us take nk > n; if n → +∞,
∥∥∥∥α

Xnk
−

α

X
∥∥∥∥→ 0 by (4) and also

∥∥∥∥α

Xnk
−

α

Xn

∥∥∥∥→

0 by hypothesis, so
α

Xn→
α

X.

Q.E.D.

We can therefore conclude:

Theorem. – Under the conditions specified above,
α

X is a Banach space
(α ≥ 1).

Definition. – An element
α

X of
α

X will be called countable if the corresponding
X only takes countably many distinct values x1, x2, ..., xi, ... and if the event
X = xi can be given a probability.
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The following terminology will be employed (measure theoretic instead of
probability theoretic): u denotes an outcome; e a set of outcomes; U the set of
all possible outcomes; µ(e) =probability that the realised outcome belongs to
e; µ(e) is a measure on U . If ei is the set of u for which X = xi, saying that
the event X = xi can be given a probability is equivalent to saying that ei is
measurable (with respect to µ); a random element X in X can be defined as a
function in u; if, at each u [except perhaps for u in a set e with µ(e) = 0] we
associate an x, say x(u), of X , this defines an X: the probability that X belongs
to a set h ⊂ X is the measure µ of the set e of u for which x(u) ∈ h; for X to

define an
α

X, we obviously need x(u) to have suitable properties: that x∗[x(u)]
is measurable and ∫

∥x(u)∥αdµ < +∞.

If the x(u) only take countably many distinct values x1, ..., xi, ... and if the set
ei of u such that x(u) = xi is measurable for any i, x∗[x(u)] is automatically
measurable; it then suffices to have∑

i

µ(ei)∥xi∥α =

∫
∥x(u)∥αdµ < +∞

for X to define a countable
α

X.
Let us suppose that X is separable; let {xj} be a countable dense sequence

in X ; for an arbitrary ε > 0, let Aj be the set of x such that

∥x− xj∥ ≤ ε

and let Bj be the set defined by

B1 = A1, Bj = Aj − Aj(A1 + A2 + ...+ Aj−1) (j ≥ 2).

The Bj are disjoint and naturally∑
j

Bj =
∑
j

Aj = X .

For
α

X (X), let
α

X′ (X′) be defined in the following way:

X′ = xj when X ∈ Bj .

X′ only takes countably many values; moreover, ∥X−xj∥ is measurable, that is
to say that Pr[X ∈ Aj ] exists, so Pr[X ∈ Bj ] exists, so the set ej of u for which
X′ = xj is measurable. Furthermore, we always have:

∥X′ − X∥ ≤ ε,

so
E(∥X′ − X∥α) ≤ εα,

which proves that E(∥X′∥α) < +∞, that
α

X′ is countable and also that
α

X′ is

arbitrarily close to
α

X in
α

X .
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Study of linear functionals on
α

X when X is separable and reflex-

ive, α > 1. – Let an
α

X (X) be equivalent to a function x(u) of u; to each u
let us associate x∗

u as a function of u (which is equivalent to defining a random
element X∗ in X ∗); let us assume that x∗

u satisfies:

1◦ x∗
u(x) for each fixed x ∈ X is a measurable function; this means, as we

will see (page 21), that ∥x∗
u∥ is measurable.

2◦
∫
∥x∗

u∥
α

α−1 dµ < +∞.

We then easily prove that x∗
u[x(u)] is measurable, for every

α

X∈
α

X and that∫
|x∗

u[x(u)]|dµ < +∞

by virtue of Hölder’s inequality [F.Riesz, I, p.44].
So:

(5)
∫

x∗
u[x(u)]dµ = E[X∗(X)]

exists for every
α

X∈
α

X .

It is easy to see that it is a linear functional in
α

X, the proof involves only
the fact that X is separable.

Conversely, if X is separable and reflexive, every linear functional
α

X on
α

X
is of the form (5). Indeed:

A. Let us take an
α

X∗; let us consider an
α

X (X) such that X = x for u ∈ e,
where e is any measurable set, and X = 0 for u /∈ e (it is clear that such an X

defines an
α

X).

For a fixed e and varying x,
α

X∗
(

α

X
)

is a numerical function in x; it is

evidently an additive function, it is also a continuous function, because

(6)

∣∣∣∣∣ α

X∗
(

α

X
)∣∣∣∣∣ ≤

∥∥∥∥ α

X∗
∥∥∥∥ · ∥∥∥∥α

X
∥∥∥∥ =

∥∥∥∥ α

X∗
∥∥∥∥ · [E(∥X∥α)] 1

α =

∥∥∥∥ α

X∗
∥∥∥∥ · [µ(e)] 1

α ∥x∥,

so if ∥x∥ → 0,

∣∣∣∣∣ α

X∗
(

α

X
)∣∣∣∣∣ → 0, so

α

X∗
(

α

X
)

is a continuous and additive func-

tional, with x∗(e) belonging to X ∗; naturally x∗(e) depends on e; x∗(e;x) will
denote the number obtained by applying x∗(e) to x ∈ X . Thus, there exists a
function of sets x∗(e), with values in X ∗, defined for every measurable e: x∗(e)
is an additive set function.

Let e1 and e2 be disjoint; let x1 and x2 be two points in X ; let X1 = x1

for u ∈ e1, X1 = 0 for u /∈ e1; X2 = x2 for u ∈ e2 and X2 = 0 for u /∈ e2.

X = X1 + X2 defines
α

X, X1 and X2 define
α

X1 and
α

X2, and
α

X=
α

X1 +
α

X2,

so
α

X∗
(

α

X
)

=
α

X∗
(

α

X1

)
+

α

X∗
(

α

X2

)
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and from above,

(7)
α

X∗
(

α

X
)

= x∗(e1;x1) + x∗(e2;x2).

But let us now take x = x1 = x2; then

α

X∗
(

α

X
)

= x∗(e1 + e2;x) [definition of x∗(e)]

and by (7),

x∗(e1 + e2;x) = x∗(e1;x) + x∗(e2;x) for any x,

which is to say
x∗(e1 + e2) = x∗(e1) + x∗(e2);

x∗(e) is a completely additive set function.
Let e1, ..., ej , ... be a countable family of pairwise disjoint sets and x1, ..., xj , ...

a sequence of points in X ; let Xj be the random element which takes the value
xj if u ∈ ej and 0 if u /∈ ej . Then

α

Yn=
α

X1 +...+
α

Xn belongs to
α

X .

Let
α

X (X) be defined by X =
∑

j Xj , if we take the xj such that∑
j

µ(ej) · ∥xj∥α = E(∥X∥α) < +∞.

Then
α

X belongs to
α

X , it is countable and

α

X= lim
n→+∞

α

Yn,

α

X∗
(

α

X
)

= lim
n→+∞

α

X∗
(

α

Yn

)
= lim

n→+∞

n∑
j=1

x∗(ej ;xj),

by above.
Choose xj to be the summit of x∗(ej), i.e.

∥xj∥ = 1 and x∗(ej ;xj) = ∥x∗(ej)∥.

such a summit exists if X is reflexive. We then have

α

X∗
(

α

Yn

)
=

n∑
j=1

∥x∗(ej)∥.

So the series with positive or zero terms
∑

j∥x∗(ej)∥ converges. Let us now take
the xj to be all equal to some x. Then

α

X∗
(

α

X
)

= x∗

∑
j

ej ;x

 [definition of x∗(e)]
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and by above,

x∗

∑
j

ej ;x

 =
∑
j

x∗(ej ;x),

where the series on the right-hand side is absolutely convergent. Now this
implies

x∗

∑
j

ej

 =
∑
j

x∗(ej), with
∑
j

∥x∗(ej)∥ < +∞.

B. Reminder of the Radon-Nikodym theorem [P.R.Halmos, I, p.128]. – If
L(e) is a bounded, completely additive and absolutely continuous numerical set
function, there exists a numerical function λ(u) such that we have, for every
measurable e,

L(e) =
∫
e

λ(u)dµ.

λ(u) is finite almost everywhere, and it is clear that we can change it on a set
of measure 0 without any harm (which would prevent the proofs if X is not
separable).

By A, x∗(e) and, as a result, x∗(e;x) for any fixed x, is a completely additive
set function of e, and by (6), absolutely continuous [∥x∗(e)∥ and |x∗(e;x)| → 0
if µ(e) → 0 for any fixed x].

By the Radon-Nikodym theorem, for any x, there exists a measurable nu-
merical function in u, and obviously a function in x, K(u;x) such that for any
measurable e, we have

x∗(e;x) =

∫
e

K(u;x)dµ;

As X is separable, let (xj) be a dense countable sequence on a sphere of radius
1 in X ; assuming the numbers aj appearing henceforth to be rational, every
point of the form

∑k
j=1 ajxj (with k finite) is said to be an x′, and the set X ′

of the x′ is countable and dense in X ; we can assume the xj to be enumerated
in a sequence {x′

j}.
Let Kj(u) = K(u;xj); for every x ∈ X ′, so for every x of the form

∑k
j=1 ajxj ,

let us set

h(u;x) =

k∑
j=1

ajKj(u);

for every fixed u, h(u;x) is obviously an additive functional in x, defined for
x ∈ X and possibly infinite, but only for the u in a set of measure 0 and
independent of x [it is the set of values of u for which some of the Kj(u) are
infinite]; let us set

λ(u) = sup
x∈X ′

|h(u;x)|
∥x∥

(for any fixed u).

Let us remark that for any fixed x in X ′, |h(u;x)|
∥x∥ is a measurable function in

u since Kj(u) is; as X ′ is countable, λ(u) is thus also measurable [P.R.Halmos,
I, p.84].
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Take any ε > 0. Then we can find an x1(u) such that (by definition of the
supremum)

a. x1(u) ∈ X ′;
b. ∥x1(u)∥ = 1;
c. |h[u;x1(u)]| ≥ λ(u)− ε.
Now by setting

x(u) = x1(u) if h[u;x1(u)] > 0

and
x(u) = −x1(u) if h[u;x1(u)] ≤ 0,

we obtain an x(u) such that
a. x(u) ∈ X ′;
b. ∥x(u)∥ = 1;
c. h(u;x(u)) ≥ λ(u)− ε.
Let

α

X (X) be defined by x(u); I say that this is countable. Firstly, E(∥X∥α) =
1 < +∞ (∥X∥ being equal to 1 is measurable); then X only takes countably many
values, namely the x′

j ; we now need to check that the set ej of the u for which
x(u) = x′

j is measurable; let e′j be the set of the u for which

h(u;x′
j)

∥x′
j∥

≥ λ(u)− ε.

As the two sides of this inequality are measurable functions of u, e′j is measur-
able; let e′′j be the sets defined by

e′′1 = e′1, e′′j = e′j − e′j(e
′
1 + ...+ e′j−1).

The e′′j are measurable. Choose x(u) = x′
j if u ∈ e′′j ; by above, the e′′j are pairwise

disjoint and
∑

j e
′′
j = U , which justifies the operation; then e′′j is measurable.

We saw previously that when X is countable, we have

α

X∗
(

α

X
)

=
∑
j

x∗(ej ;x
′
j).

But by the definition of h,

x∗(ej ;x
′
j) =

∫
ej

h(u;x′
j)dµ

and since, on ej , x′
j = x(u), we have

α

X∗
(

α

X
)

=
∑
j

∫
ej

h[u;x(u)]dµ =

∫
U

h[u;x(u)]dµ ≥
∫

U

[λ(u)− ε]dµ;

as ε is arbitrarily small and
α

X∗
(

α

X
)

is finite, we have

∫
U

λ(u)dµ < +∞
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[λ(u) is obviously positive or zero], so λ(u) is finite almost everywhere. So,
apart from some exceptional values of u, h(u;x) for fixed u is a continuous and
additive functional on X ′; if x /∈ X ′ and if xj ∈ X ′ with xj → x since X ′

is dense in X , h(u, xj) converges according to Cauchy; let h(u;x) be its limit.
Then it is clear that h(u;x) is a continuous and additive functional defined on
X with norm λ(u).

C. We are now going to show that∫
U

λ(u)
α

α−1 dµ < +∞.

The ideas behind the proof are borrowed from Landau [F.Riesz, I, p.44] and
from above.

Suppose that
∫

U λ(u)
α

α−1 dµ = +∞; we can then find a sequence of increasing
positive numbers bk such that

(8) Br =

∫ br+1

br

λ(u)
α

α−1 dµ ≥ 2
2

α−1 for every r.

Let x1(u) be the summit of h(u;x) considered as a linear functional in x;
and x2(u) the point, if u is such that br ≤ λ(u) < br+1, equal to

∥h(u)∥
1

α−1

Br
x1(u).

We remark that ∥x2(u) is measurable and that, by (8),∫
U

∥x2(u)∥αdµ < +∞,

and moreover,

h[u;x2(u)] =
∥h(u)∥

α
α−1

Br
.

Let e′j be the set of u for which we have both

h(u;x′
j) ≥

1

2

∥h(u)∥
α

α−1

Br
(9)

∥x2(u)∥α ≥ ∥x′
j∥α − ε (any ε > 0)(10)

The e′j are measurable since h[u;x′
j ], ∥h(u)∥ and ∥x2(u)∥ are measurable; ev-

ery u belongs to at least one of the e′j since, for any given u (save for exceptional
u), there is an x′

j arbitrarily close to x2(u); let e′′j be defined by

e′′1 = e′1, e′′j = e′j − e′j(e
′
1 + ...+ e′j−1).

The e′′j are measurable, pairwise disjoint and∑
j

e′′j = U .
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If u ∈ e′′j , let us set x(u) = x′
j and let

α

X (X) be the random element defined by
x(u); by above, it is countable since, thanks to (10),∫

U

∥x(u)∥αdµ ≤ ε+
∫

U

∥x2(u)∥αdµ < +∞.

Since x(u) = x′
j on e′′j , we have

α

X∗
(

α

X
)

=
∑

x∗[e′′j ;x
′
j ] =

∑
j

∫
e′′j

h[u;x′
j ]dµ

∑
j

∫
e′′j

h[u;x(u)]dµ =

∫
U

h[u;x(u)]dµ =
1

2

∫
U

∥h(u)∥
α

α−1

Br
,

α

X∗
(

α

X
)

≥ 1

2

∑
r

1

Br

∫ br+1−0

br

∥h(u)∥
α

α−1 dµ =
1

2

∑
r

1 = +∞,

which is impossible, so∫
U

∥h(u)∥
α

α−1 dµ < +∞ [∥h(u)∥ = λ(u)].

D. The above work shows that if
α

X −X − x(u) is countable, h[u;x(u)] is

a measurable function in u; take any
α

X −X − x(u); let
α

Xn −Xn − xn(u) be

countable and converge to
α

X as it was indicated before, that is to say, in such
a way that ∥xn(u)− x(u)∥ converges to zero uniformly in u; then h[u;xn(u)] is
measurable and converges to h[u;x(u)] which is thus measurable (as a limit of
measurable functions).

We conclude from this that ∫
U

h[u;x(u)]dµ

makes sense for any
α

X −X − x(u), because∫
U

|h[u;x(u)]|dµ ≤
∫

U

λ(u)∥x(u)∥dµ.

It then suffices to apply Hölder’s inequality to see that∫
U

|h[u;x(u)]|dµ < +∞

knowing that∫
U

λ(u)
α

α−1 dµ < +∞ and
∫

U

∥x(u)∥αdµ < +∞.

We have
α

X∗
(

α

X
)

=

∫
U

h[u;x(u)]dµ;

23



this is true if
α

X is countable, as we have seen before. If
α

X is arbitrary, let
α

Xn

be countable and converge to
α

X.
α

X∗
(

α

Xn

)
is equal to

∫
U h[u;xn(u)]dµ and converges to

α

X∗
(

α

X
)

. But if

xn(u) → x(u) uniformly in u, which is possible since∫
U

λ(u)dµ < +∞,

we then have that ∫
U

h[u;xn(u)]dµ→
∫

U

h[u;x(u)]dµ,

so

(11)
α

X∗
(

α

X
)

=

∫
U

h[u;x(u)]dµ.

Q.E.D.

The case α = 1 is only different from paragraph C onwards, but the proof
is simpler; in the case α = 1 and under the hypothesis that X ∗ is separable,
the result was obtained by Dieudonné [J.Dieudonné, I, p.38]. In collaboration
with M. Fortet [R.Fortet and E.Mourier, I], we could extend the above results
for α ≥ 1 under the hypothesis that just X is separable.

IV. – Strong law of large numbers with respect
to strong convergence

Reminder of Birkhoff’s ergodicity theorem(8). – If ordinary numerical
random variables Xs form a strictly stationary discontinuous chain and if E(Xs)
exists, the arithmetic mean Yn = X1+...+Xn

n converges, as n increases indefi-
nitely, almost surely to a limiting random variable Y.

Now let X be a random element taking its values in a separable Banach space
X , such that x∗(X) is measurable for any fixed x∗ and such that

E(∥X∥) < +∞.

Let us consider a strictly stationary and discontinuous sequence Xs.

1st Case. – The Xs only take a finite number of distinct values x1, ..., xk

(the same values whatever s is, because of stationarity).
Let Aj

s the (ordinary) random variable, which equals 1 if Xs = xj and 0
otherwise. The set esj of events for which Xs = xj is assumed to be measurable;

µ(esj) = Pr(Xs = xj) = Pj

is independent of s because of stationarity. For a given j, the Aj
s form a strictly

stationary sequence of random variables, so

almost surely,
1

n

n∑
s=1

Aj
s −→
n→∞

a limit Lj .

(8)In [Kolmogorov, II, p.367], one can find a proof of Birkhoff’s theorem that simplifies
Birkhoff’s original proof [Khintchine, I, p.485], as well as a simple probabilistic proof.
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It immediately follows that almost surely, 1
n

∑n
s=1 Xs converges strongly to∑k

j=1 Ljxj when n → ∞.
More precisely, we see that

E


∥∥∥∥∥∥ 1n

n∑
1

Xs −
k∑
1

Ljxj

∥∥∥∥∥∥
→ 0.

2nd Case. – The Xs only take a countable number of distinct values x1, ..., xj , ...
(independently of s) and the event Xs = xj can be given a probability.

Let Xt
s be the random element defined by Xt

s = Xs if Xs = x1 or x2 or ...
or xt; Xt

s = 0 if Xs = xt+1 or xt+2 or ... The Xt
s are of type studied in the first

case; so, except for the s in a set et such that µ(et) = 0, we have

lim
n→+∞

1

n

n∑
s=1

Xt
s = At

(some limit dependent on the t under consideration).
Let us set

Xs = Xt
s + Rt

s;

Rt
s is equal to 0 or to xt+1, xt+2, ...

If Pj = Pr[Xs = xj ],

E(∥Rt
s∥) =

∑
j>t

Pj∥xj∥.

The hypothesis is that ∑
j

Pj∥xj∥ < +∞,

so
E(∥Rt

s∥) → 0 if t → +∞,

(12)
1

n

n∑
s=1

Xs =
1

n

n∑
s=1

Xt
s +

1

n

n∑
s=1

Rt
s,

∥∥∥∥∥∥ 1n
n∑

s=1

Rt
s

∥∥∥∥∥∥ ≤ 1

n

n∑
s=1

∥Rt
s∥.

The ∥Rt
s∥ for any given t form a stationary sequence of ordinary random

variables; so, unless u ∈ e′t,

µ(e′t) = 0,
1

n

n∑
s=1

∥Rt
s∥ −→

n→+∞
Mt(≥ 0)

and, by Fatou’s lemma, since

E

 1

n

n∑
s=1

∥Rt
s∥

 = E(∥Rt
s∥) =

∑
j>t

Pj∥xj∥ independently of n,
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we have
E(Mt) ≤

∑
j>t

Pj∥xj∥ = Kt ≥ 0;

we can thus find an increasing sequence of t, t1, t2, ..., tν, ..., such that∑
ν

Ktν < +∞,

so, by the Borel-Cantelli theorem, the sequence of random variables Mtν (ν =
1, 2, ...) converge almost surely to 0.

Let
e =

∑
t

et, e′ =
∑
t

e′t;

let e′′t be the set of u for which Mtν does not tend to 0. Then

µ(e) = µ(e′) = µ(e′′) = 0.

Finally, let e′′′ = e + e′ + e′′ and let u be any outcome with u /∈ e′′′. Then we
can take ν sufficiently large so that, for the u considered, Mtν ≤ ε, and with
this fixed ν, we have

1

n

n∑
s=1

∥Rtν
s ∥ ≤ 2ε

and, as a result, ∥∥∥∥∥∥ 1n
n∑

s=1

Rtν
s

∥∥∥∥∥∥ ≤ 2ε

for all n sufficiently large.
On the other hand,

1

n

n∑
s=1

Xtν
s → Atν when n → +∞;

by (12) with t = tν we have, as ε is arbitrary, that 1
n

∑n
s=1 Xs has a limit

y(u) (strong convergence) for this u. Hence, this is true for all the u /∈ e′′′

where µ(e′′′) = 0, so 1
n

∑n
s=1 Xs converges strongly almost surely. If Y is the

random element defined by y(u), we have, for each fixed x∗, a measurable func-
tion x∗[y(u)] of u, as an almost everywhere limit of x∗ [ 1

n

∑n
s=1 Xs

]
, which is

measurable. Then as X is separable, ∥y(u)∥ is measurable, and by Fatou’s
lemma,

E(∥Y∥) =
∫

U

∥y(u)∥dµ ≤ lim inf
n

∫
U

∥∥∥∥∥∥ 1n
n∑

s=1

Xs

∥∥∥∥∥∥ dµ ≤ E(∥Xs∥) < +∞,

and we have the following theorem.

Theorem. – If the Xs in the stationary sequence only take a countable
number of distinct values x1, ..., xj , ... and if the event Xs = xj can be given a
probability, almost surely 1

n

∑n
s=1 Xs converges strongly to a limit Y which is a

random element of type Xs, that is to say, that x∗(Y) is measurable and

E(∥Y) < +∞.
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3rd Case. – The Xs take any values.
Since X is separable, let [xj ] be a dense countable sequence in X .
Let ν be any integer and Aν

j the set of the x ∈ X for which ∥x− xj∥ ≤ 1
ν
.

Let Bν
j be the sets defined in the following way:

Bν
1 = Aν

1 , Bν
1 = Aν

j − Aν
j (A

ν
1 + ...+ Aν

j−1) (j ≥ 2).

The Bν
j are disjoint and

∑
j Bν

j =
∑

j Aν
j = X .

Let Zν be the transformation which associates to every x ∈ X some y =
Zν(x) by the rule

y = xj if x ∈ Bν
j .

We always have

∥Zν(x)− x∥ ≤ 1

ν
.

Let X be a random element, of the type considered, on X . We associate a
random element Xν with it, by

Xν = Zν(X).

It is clear that Xν only takes a countable number of distinct values, that
Xν = xj can be given a probability, and that

E(∥Xν − X∥) ≤ 1

ν
,

more precisely, we surely have

∥Xν − X∥ ≤ 1

ν
.

As X1,X2, ...,Xs, ... is a strictly stationary sequence, the sequence of the Xν
s =

Zν(Xs) is strictly stationary, and we have

1

n

n∑
s=1

Xs =
1

n

n∑
s=1

Xν
s +

1

n
[Xν

s − Xs].

We have surely∥∥∥∥∥∥ 1n
n∑

s=1

[Xν
s − Xs]

∥∥∥∥∥∥ ≤ 1

n

n∑
s=1

∥Xν
s − Xs∥ ≤ 1

ν
for any n.

For any, but fixed, given ν, we saw that 1
n

∑n
s=1 Xν

s converges strongly almost
surely (2nd case above), that is to say, with the exception of

u ∈ eν, with µ(eν)0.

If we consider
u /∈ e =

∑
ν

eν, µ(e) = 0,

1
n

∑n
s=1 Xν

s converges for any ν, and as a result, we have that 1
n

∑n
s=1 Xs con-

verges strongly almost surely to a limit Y [it is clear that x∗(Y) is measurable
and E(∥Y∥) < +∞ as in the above case]. Hence:
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Strong law of large numbers. – If X is separable, if every x∗(Xs) is
measurable and E(∥Xs∥) < +∞, and if X1,X2, ...,Xs, ... form a strictly station-
ary discontinuous sequence, then almost surely the mean 1

n

∑n
s=1 Xs converges

strongly to a limit Y which is a random element of the same type as the Xs.

Remark I. – We did not assume that X is reflexive, and we did not assume
the existence of E(Xs). Remark that if 1

n

∑n
s=1 Xs converges strongly, a fortiori

it converges weakly. Moreover, if the Xs are independent and have the same law
(a particular case of a stationary sequence), the x∗(Xs) will also be independent
and of the same law; also,

|x∗(Xs)| ≤ ∥x∗∥ · ∥Xs∥,

so E∥Xs∥ < +∞ implies the existence of E[x∗(Xs)]. But, by the preceding
theorem,

x∗

 1

n

n∑
s=1

Xs

 =
1

n

n∑
s=1

x∗(Xs) → x∗(Y) almost surely,

but, by Kolmogorov’s theorem,

1

n

n∑
s=1

x∗(Xs) → E[x∗(Xs)] almost surely,

so
E[x∗(Xs)] = x∗(Y).

Thus, just by the definition of E(Xs), Xs has a mathematical expectation Y,
so:

Theorem. – When X is separable, E(∥X∥) < +∞ implies the existence of
E(X).

This theorem is an interesting existence theorem of Pettis integrals; it gen-
eralises the theorem of Chapter I (page 6), where X was assumed to be not
only separable, but also reflexive.

Remark II. – When the Xs are independent and of the same law, the limit
Y of 1

n

∑n
s=1 Xs is the mathematical expectation E(Xs).

V. – Strong law of large numbers in mean of
order α.

Ergodic theorem of Yosida and Kakutani [Yosida and Kakutani, I]. – Let
T be a bounded linear operator which maps from a Banach space X into itself
and such that ∥Tn∥ ≤ C for n = 1, 2, ... (where C is a fixed number independent
of n).

If, for x ∈ X , the sequence {xn}, where

xn =
1

n
(T + T2 + ...+ Tn)x,

n = 1, 2, ..., contains a subsequence which converges weakly to a point x̄ ∈ X ,
the sequence {xn} converges strongly to this point x̄.
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If we denote by T1 the operation x 7→ x̄, T1 is a bounded linear operator
which maps from X into itself and

TT1 = T1T = T2
1 = T1.

We will apply the following theorem:

Let {Xi}i=(0±1±2±...) be a strictly stationary sequence of random elements
with values in some Banach space X such that

E(∥Xi∥α) < +∞;

let
α

Xi be the corresponding elements in
α

X . Then these
α

Xi define in
α

X a closed

linear manifold
α

X ′ which is itself a Banach space (it is a subset of
α

X , it is even
a separable subset).

We will need to know the form of the linear functionals on this linear mani-
fold; now, in Paragraph III, we found the general form of linear functionals on
α

X ; but, taking into account the extension theorem of linear functionals on a
linear subspace to the whole space with conserved norm [E. Hille, I], we will be
able to use this result.

The
α

X of the form
∑k

i=1 ai
α

Xi, where k is finite and arbitrary and the ai are

some numbers, form a non-closed subset
α

X ′′ of
α

X ′;
α

X ′ is the closure of
α

X ′′.

If
α

X is in
α

X ′′, so of the form
k∑

i=1

ai
α

Xi,

let us set

(13)
α

Z= T
(

α

X
)

=

k∑
i=1

ai
α

Xi+1;

T
(

α

X
)

is an operation which is obviously additive, and by virtue of stationarity,

we have

E(∥Z∥α) = E


∥∥∥∥∥∥

k∑
i=1

aiXi+1

∥∥∥∥∥∥
α
 = E


∥∥∥∥∥∥

k∑
i=1

akXi

∥∥∥∥∥∥
α
 = E(∥X∥α),

so

(14)
∥∥∥∥αZ∥∥∥∥ =

∥∥∥∥α

X
∥∥∥∥ .

We need to see whether
α

Z is defined uniquely. If
α

X only admits one representa-

tion of the form
∑k

i=1 ai
α

Xi, uniqueness is evident; but suppose that
α

X admits
two distinct representations of this form, for example,

k∑
i=1

ai
α

Xi and
k∑

i=1

a′i
α

Xi
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(we can always assume that k is the same for both forms); with (13), we will

obtain two transformations of
α

X,
α

Z and
α

Z′ given by

α

Z=
k∑

i=1

ai
α

Xi+1,
α

Z′=

k∑
i=1

a′i
α

Xi+1 .

But
α

Z and
α

Z′ are not distinct; indeed,

α

X=

k∑
i=1

ai
α

Xi=

k∑
i=1

a′i
α

Xi

implies that, by setting bi = ai − a′i,

E


∥∥∥∥∥∥

k∑
i=1

biXi

∥∥∥∥∥∥
α
 = 0.

So, by virtue of stationarity,

E


∥∥∥∥∥∥

k∑
i=1

biXi+1

∥∥∥∥∥∥
α
 = 0,

which is to say that
α

Z=
α

Z′.

Now take any
α

X in
α

X ; there is a sequence
α

Xi∈
α

X ′′ converging to
α

X, which,
by Cauchy, implies that

when n → ∞,

∥∥∥∥α

Xn+p −
α

Xn

∥∥∥∥→ 0,

with 1
n , uniformly in p. We then have∥∥∥∥∥T
(

α

Xn+p

)
− T

(
α

Xn

)∥∥∥∥∥ = T
(

α

Xn+p −
α

Xn

)
=

∥∥∥∥α

Xn+p −
α

Xn

∥∥∥∥ by (14).

So T
(

α

Xn

)
converges to a limit which, by definition, we will call T

(
α

X
)

.

T
(

α

X
)

depends on
α

X, but obviously not on the sequence
α

Xn; T
(

α

X
)

is then

a transformation defined on
α

X ; it is immediate that it is linear, continuous and
that

∥T∥ = 1 (more precisely,

∥∥∥∥∥T
(

α

X
)∥∥∥∥∥ =

∥∥∥∥α

X
∥∥∥∥)

and, as a result, for all n,
∥Tn∥ = 1.
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The theorem of Yosida and Kakutani then gives us the following statement: let
α

X∈
α

X ′; if 1
n

∑n
i=1 Ti

(
α

X
)

converges weakly, it converges strongly.

In particular, let us take

α

X=
α

X1, T
(

α

X
)

=
α

X2, , ..., T
(

α

X
)

=
α

Xn+1 .

Then we have that, if

1

n

n∑
i=1

Ti

(
α

X
)

=
1

n

(
α

X2 +
α

X3 +...+
α

Xn+1

)
converges weakly, it converges strongly, which is to say that there exists a random
element L such that

(15) E

(∥∥∥∥X1 + ...+ Xn

n
− L

∥∥∥∥α
)

→ 0.

It suffices, moreover, that there exists a subsequence of 1
n

∑n+1
i=2

α

Xi which con-

verges weakly; this will be the case, for example, if
α

X ′ is weakly compact, so

in particular if
α

X ′ is uniformly convex.
Note that the existence of E(Xi) is not assumed, likewise E(L) is not assumed

to exist, but if X is separable and reflexive, E(Xi) and E(L) exist (cf. Chapter
I, page 6); in any case, when E(L) exists, L does not reduce to the almost sure
element E(L). In all cases, we have the following properties.

Property 1. – If E(Xi) and E(L) exist – so in particular if X is separable
and reflexive – we have E(L) = E(Xi). In fact, we do not lose generality by
assuming E(Xi); then

E

 1

n

n∑
i=1

Xi − L

 = −E(L)

exists, but ∥∥∥∥∥∥E
 1

n

n∑
i=1

Xi − L

∥∥∥∥∥∥ ≤ E

∥∥∥∥∥∥ 1n
n∑

i=1

Xi − L

∥∥∥∥∥∥
which tends to zero by (15); so

E(L) = 0 = E(Xi).

Property 2. – When (15) holds, for any x∗ ∈ X ∗,

x∗
[
X1 + ...+ Xn

n

]
=

1

n

n∑
i=1

x∗(Xi)

converges in mean of order α, hence also in probability, to x∗(L); E[x∗(Xi)]
exists, because E∥Xi∥α < +∞; if the Xi are independent the x∗(Xi) are also
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independent. Then, by Kolmogorov’s theorem,

1

n

n∑
i=1

x∗(Xi) → E[x∗(Xi)] almost surely

so
x∗(L) = E[x∗(Xi)] almost surely,

in other words,
x∗(L) = E[x∗(Xi)],

except for the u belonging to an event e of zero µ measure, but e can depend
on x∗.

But let us assume that X ∗ is separable and let {x∗
j} be a dense countable

sequence in X ∗. There exists e independent of j with µ(e) = 0 such that for
all u /∈ e, we have

x∗
j (L) = E[x∗

j (Xi)].

Let x∗ be arbitrary and x∗
j such that ∥x∗ − x∗

j∥ ≤ ε. There exists a set e′ such
that µ(e′) = 0 and such that if u /∈ e′, ∥L∥ is finite [since E(∥L∥) < +∞]. Then
we have

|E[x∗(Xi)]− E[x∗
j (Xi)]| < εE(∥Xi∥),

|x∗(L)− E[x∗(Xi)]| ≤ |(x∗ − x∗
j )(L) + x∗

j (L)− E[x∗
j (Xi)]

+ E[x∗
j (Xi)]− E[x∗(Xi)]|

≤ εE∥Xi∥+ εE∥L∥+ |x∗
j (L)− E[x∗

j (Xi)]|;

if u /∈ e′ + e,
x∗
j (L)− E[x∗

j (Xi)] = 0,

which means
|x∗(L)− E[x∗(Xi)]| ≤ ε∥L∥+ εE(∥Xi∥)

and as ε is arbitrarily small,

x∗(L) = E[x∗(Xi)].

As a point L in X is entirely determined by the set of the values of x∗(L),
L is an almost sure random element l satisfying

x∗(l) = E[x∗(Xi)]

for every x∗, which proves that the Xi have mathematical expectation l and
that 1

n

∑n
i=1 Xi tends “in mean of order α”, hence in probability, to l.

Application 1. – X is the real line,
α

X and
α

X ′ are then the space Lα

which is uniformly convex if α > 1, because a random variable is equivalent to
a numerical function f(u), then (15) can be applied (Yosida’s theorem reduces
in this case to Birkhoff’s theorem); hence, we have the following theorem:

Let {Xi} be a strictly stationary sequence of random variables, with

E(∥Xi∥α) < +∞ (α > 1).
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Then its temporal mean 1
n

∑n
i=1 Xi converges in mean of order α.

The result is known for α = 2 under the less strict condition of only station-
arity of order 2, but here we can also avoid strict stationarity for α = 2, or even
α, and maybe for any α. For an arbitrary α, the theorem is perhaps novel.

It can immediately be extended to the case where the Xi are random vari-
ables in several dimensions.

Application 2. – Assume that X is the space Lα; an Xi is a numerical
function f(t) of a variable t such that∫

|f(t)|αdt < +∞,

but this function f varies with u; we can thus consider a function f(u; t) in two
variables u and t; we have ∫

|f(u; t)|αdt < +∞,

but the hypothesis E(∥X∥α) < +∞, given

∥X∥α =

∫
|f(u; t)|αdt,

is equivalent to ∫ ∫
|f(u; t)|αdtdµ < +∞

which shows that
α

X is the space Lα of numerical functions in two variables u
and t, so it is a uniformly convex space and (15) can be applied.

This case is an extremely important case of random functions, and moreover
is a particular case of the following, since X = Lα is reflexive, for α > 1.

Application 3. – Assume that X is separable and reflexive, which means
that (11) holds, let

Yn =
X2 + ...+ Xn+1

n

and let yn(u) be the value of Yn for the outcome u. We are going to show that
α

Yn converges weakly. Save for some exceptional u, by a preceding theorem,
yn(u) converges strongly, so weakly to a limit y(u), which implies that

h[u; yn(u)] → h[u; y(u)];

h[u; y(u)] is a measurable function in u, as the limit of h[u; yn(u)] which is
measurable (see above). We will show that

(16)
α

X∗ (
α

Yn) =

∫
U

h[u; yn(u)]dµ→
∫

U

h[u; y(u)]dµ.

Let A be the set of u for which we do not have an upper bound ∥yn(u)∥ ≤ A;
as yn(u) converges, save for exceptional u, towards a limit y(u), the yn(u) are
uniformly bounded in n; so if we take A large enough, µ(A ) ≤ ε; we have∣∣∣∣∫

A

h[u; yn(u)]dµ

∣∣∣∣ ≤ ∫
A

λ(u)
∥∥yn(u)∥∥ dµ
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and by Hölder’s inequality,∫
A

λ(u)
∥∥yn(u)∥∥ dµ ≤

[∫
A

λ(u)
α

α−1 dµ

]α−1
α
[∫

A

∥∥yn(u)∥∥α dµ

] 1
α

(17)

≤
[∫

A

λ(u)
α

α−1 dµ

]α−1
α
[∫

U

∥∥yn(u)∥∥α dµ

] 1
α

.

But [∫
U

∥∥yn(u)∥∥α dµ

] 1
α

= ∥
α

Yn∥ = [E(∥Xi∥α)]
1
α < +∞

independently of n; moreover,∫
U

λ(u)
α

α−1 dµ < +∞;

if we replace A by A′ > A, A is replaced by A ′ ⊂ A and µ(A ) → 0 if A → +∞;
this means that by taking A large enough (ε small enough),

∫
A λ(u)

α
α−1 dµ is

arbitrarily small, hence so is
∫

A h[u, yn(u)]dµ and this holds uniformly in n.
Simultaneously and for the same reasons,

∫
A h[u; y(u)]dµ is small, because for

any n:∫
A

∣∣h[u; yn(u)]∣∣ dµ ≤
[∫

U

λ(u)
α

α−1 dµ

]
α− 1

α
[E(∥Xi∥α)]

1
α = C (Hölder),∣∣h[u; yn(u)]∣∣→ ∣∣h[u; y(u)]∣∣ almost everywhere;

so by Fatou’s lemma,

(18)
∫

U

∣∣h[u; y(u)]∣∣ dµ < C,

so as µ(A ) → 0, ∫
A

h[u; y(u)]dµ→ 0.

Likewise, let B be the set of the u for which we have λ(u) > B, where B is
a positive number; if we replace B by B′ > B, B is replaced by B′ ⊂ B and
µ(B) → 0 if B → +∞ because∫

U

λ(u)
α

α−1 dµ < +∞

then ∫
B

λ(u)
α

α−1 dµ→ 0.

It then follows from (17) that ∫
B

h[u; yn(u)]dµ

is small, uniformly in n when B is large, and likewise by (18),∫
B

h[u; y(u)]dµ is small.
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Let D = A + B. On U − B, we have λ(u) ≤ B,

the upper bound
∥∥yn(u)∥∥ ≤ A, so |h[u; yn(u)]| ≤ AB.

We can then pass to the limit under the integral sign
∫

and write∫
U −D

h[u; y(u)]dµ = lim
n→+∞

∫
U −D

h[u; yn(u)]dµ.

But our work above then shows that, since A and B can be arbitrarily large,∫
U

h[u; y(u)]dµ = lim
n→+∞

∫
U

h[u; yn(u)]dµ = lim
n→+∞

α

X∗ (
α

Yn).

Now, let Y be the random element defined by Y = y(u) for the outcome u.

Let us show that Y defines an
α

Y∈
α

X , in other words„ that

a. x∗(Y) = x∗[y(u)]

is a measurable function in u for every fixed x∗ and that ∥Y∥ is measurable. The
first point results from the fact that almost everywhere, x∗[y(u)] = limx∗[yn(u)]
and that x∗[yn(u)] is measurable. As X is separable, it follows that ∥Y∥ is
measurable (cf. Chapter I).

b. E[∥Y∥α] =
∫

U

∥y(u)∥αdµ < +∞.

We saw that if h(u) ∈ X ∗ is such that

1◦ h[u;x] is measurable in u for every fixed x, which means that ∥h(u)∥ is
measurable, since X ∗ is separable (cf. Chapter I);

2◦
∫

U

∥h(u)∥
α

α−1 dµ < +∞,

h(u) defines a continuous linear functional
α

X∗ on
α

X by the formula

α

X∗
(

α

X
)

=

∫
U

h[u;x(u)]dµ,

where x(u) is the value of the X corresponding to
α

X for the outcome u. As a
consequence of the above, we have∫

U

|h[u; y(u)]|dµ < +∞

for every h(u) satisfying the conditions 1◦ and 2◦ above. It suffices to use the
proof c on page 19 again to deduce that∫

U

∥y(u)∥αdµ < +∞,
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the role of α being played by α
α−1 and vice versa, h(u) will play the role of x(u)

on page 19, y(u) that of h(u) on page 19; this “exchange” is normal, as X is
reflexive.

Conclusion. – Since Y defines an
α

Y∈
α

X ,∫
U

h[u; y(u)]dµ =
α

X∗
(

α

Y
)
,

and we proved that, for every
α

X∗∈
α

X ∗,

lim
n→+∞

α

X∗
(

α

Yn

)
=

α

X∗
(

α

Y
)
,

which shows that
α

Yn converges weakly towards
α

Y; then as a result,
α

Y, which

we know belongs to
α

X , actually belongs to
α

X ′ more precisely, by virtue of a
theorem that says that if a point belonging to a fixed closed bounded manifold
V converges weakly to a limit, this limit belongs to V .

Yosida’s theorem can then be applied and tells us that
α

Yn converges strongly

to
α

Y, i.e.

lim
n→+∞

∥∥∥∥α

Yn −
α

Y
∥∥∥∥ = lim

n→+∞

E


∥∥∥∥∥∥ 1n

n∑
i=1

Xi − Y

∥∥∥∥∥∥


α


1
α

= 0.

Theorem. – Law of large numbers in mean of order α. – If X is separable
and reflexive, and if α > 1, {Xi} (α = 0 ± 1...) denote a strictly stationary

sequence of elements Xi of
α

X , there exists an element Y in X such that

lim
n→+∞

E


∥∥∥∥∥∥ 1n

n∑
i=1

Xi − Y

∥∥∥∥∥∥
α
 = 0.

Remark. – Let us return to theorem 2 (Section II); there, we proved that
if Y is the random element defined by y(u), save exceptional outcomes, yn(u)
tends weakly to y(u), which allows us to say that Yn → Y almost surely. But
we left the following point in the shade: whether Y is a random element of the
type considered, that is to say, such that

a. x∗[y(u)] is measurable, for any fixed x∗; ∥y(u)∥ is measurable;
b.
∫

U ∥y(u)∥αdµ < +∞ (in theorem 2, Section II, α could equal 1).

For a, x∗[y(u)] is necessarily measurable as a limit of x∗[yn(u)] and then
∥y(u)∥ is measurable because X is separable.

For b, if α > 1, this was just shown above; for α = 1, we can prove it directly
by using the procedure of Landau.

α

X is always defined, we cannot find all the
functionals of it(9), but some obvious ones suffice to prove b.

(9)This question is now resolved [R. Fortet and E. Mourier, I].
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Chapter III.
Characteristic Function of a Random Element in a

Banach Space.

Definition. – Let x∗ be any real linear functional; x∗(X) is a numerical
random variable X∗ equipped with a distribution function; the random variable
eiX

∗
is equally measurable if, as it is bounded in modulus, it has a mathematical

expectation – the usual characteristic function of X∗ – φ(x∗):

φ(x∗) = E[eiX
∗
] = E[eix

∗(X)].

However, this assumes that X∗ is a random variable in the proper sense. By
definition, X will be a random variable in the proper sense if there exists a
sequence of bounded measurable sets ek ∈ X tending to X and such that

lim
k→+∞

mes(ek) = 1.

If X is a random element in the proper sense, X∗ is a random variable in the
proper sense. In the case of the measure introduced by M. Fréchet (F-measure,
with condition F’), X is always a random element in the proper sense. In all
that follows we will assume that X is a random element in the proper sense.

By definition, φ(x∗), considered as a function of x∗ in X ∗, is the charac-
teristic function of X. [E.Mourier, I and III] [L. Le Cam, I].

Remark. – In the case of a Euclidean space Rn with n dimensions, with X
having coordinates X1, ...,Xn, every linear functional is of the form

x∗(X) = ν1X1 + ...+ νnXn,

where ν1, ..., νn are the constants defining x∗ and vice versa.
In this case, the characteristic function of X has long been

φ(ν1, ..., νn) = E[ei(ν1X1+...+νnXn)]

= E[eix
∗(X)].

For an arbitrary Banach space, the definition φ(x∗) = E[eix
∗(X)] is thus the

immediate generalisation of the classical characteristic function.

Theorem 1. – If X and Y are independent random elements defined on the
same X , the characteristic function of X+Y is the product of the characteristic
functions of X by that of Y.

Let φX, φY and φX+Y be the characteristic functions of X, Y and X + Y
respectively. Then

φX+Y = E[eix
∗(X+Y)]

= E[eix
∗(X)eix

∗(Y)]

= φX(x∗)φY (x
∗).

Indeed, eix
∗(X) and eix

∗(Y) are two independent numerical random variables
and we can apply the classical theorem of the mathematical expectation of the
product of two independent random variables.
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Theorem 2. – φ(x∗) is a uniformly continuous function in x∗, that is to
say, that if a positive ε is given, we can find positive η depending only on ε such
that

|φ(x∗
1)−φ(x∗

2)| ≤ ε,

provided that
∥x∗

1 − x∗
2∥ ≤ η.

Indeed:

|φ(x∗
1)−φ(x∗

2)| = |E[eix
∗
1(X)]− E[eix

∗
2(X)]|

≤ E[|eix
∗
1(X) − eix

∗
2(X)|]

≤ E[|eix
∗
1(X)(1− eiy

∗(X))|],

where
x∗
2 = x∗

1 + y∗.

We thus have ∥y∗∥ ≤ η; let ek be such that

mes(ek) > 1− ε

3
.

We have

E[|eix
∗
1(X)(1− eiy

∗(X))|] =
∫
x∈ek

|1− eiy
∗(X)|dm+

∫
x∈X −ek

|1− eiy
∗(X)|dm.

The second term is smaller than 2ε
3 , because

|1− eiy
∗(x)| ≤ 2

and m(X − ek) is smaller than ε
3 .

As for ∫
x∈ek

|1− eiy
∗(x)|dm,

if ∥y∗∥ ≤ η,
|1− eiy

∗(x)| ≤ ε

3
,

because ek is bounded, so there exists M such that on ek, ∥x∥ ≤ M; so

|φ(x∗
1)−φ(x∗

2)| ≤ ε.

Theorem 3. – φ(x∗) is continuous in the sense of weak convergence in X ∗.
As in the previous theorem, we have

|φ(x∗
1)−φ(x∗

2)| ≤ E|1− ei(x
∗
2−x∗

1)(X)| =
∫
ek

+

∫
X −ek

,

where we again have ek bounded and such that m(ek) > 1 − ε
3 , so the second

term is ≤ 2ε
3 as in Theorem 2.

Saying that x∗
2 converges weakly to x∗

1 is to say that for every x∗∗ we have

|x∗∗(x∗
2 − x∗

1)| → 0.
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So for every fixed x, the weak convergence of x∗
2 to x∗

1 implies that

(x∗
2 − x∗

1)(x) → 0.

The measurable and bounded function ei(x
∗
2−x∗

1)(x) thus tends to 1 everywhere
and ∫

ek

|1− ei(x
∗
2−x∗

1)(x)|dm → 0.

Theorem 4. – If E(X) and E[∥X∥2] exist (10) the characteristic function
φ(x∗) of X takes the form

φ(x∗) = 1 + ix∗[E(X)]− 1

2
E[|x∗(X)|2] + ∥x∗∥2ω(x∗),

where
ω(x∗) → 0 if ∥x∗∥ → 0.

Proof. – Let z∗ ∈ X ∗ be such that ∥z∗∥ = 1 and x∗ = λz∗, which implies
that λ = ±∥x∗∥. Let us set U = z∗(X). Then

µ1 = E(U) = E[z∗(X)] = z∗[E(X)]

exists since E(X) exists. Likewise, E(U2) exists because |U| ≤ ∥X∥ and E[∥X∥2]
exists.

φ(x∗) = E[eix
∗
(X)] = E[eiλz

∗
(X)] = E[eiλU].

As a function of λ, φ(x∗) is thus the characteristic function of the random
variable U, and as a consequence,

(1) φ(x∗) = 1 + iµ1 −
1

2
E(U2)λ2 + λ2ω1(z

∗, λ),

where, for every fixed z∗, ω(z∗; λ) → 0 if λ→ 0. But (1) can be written as

φ(x∗) = 1 + ix∗[E(X)]− 1

2
E[x∗(X)2] + ∥x∗∥2ω1(z

∗; λ).

The convergence of ω1(z
∗; λ) to 0 when λ → 0 is uniform with respect to

z∗. Indeed, with Fz∗(α) denoting the distribution function of U, the mean value
theorem gives

ω1(z
∗; λ) =

1

2

∫ +∞

−∞
α2[1− eiλ0α]dFz∗(α), where 0 ≤ λ0 ≤ λ,

and if M is any positive number,

ω1(z
∗; λ) =

1

2

∫
|α|>M

α2[1− eiλ0α]dFz∗(α) +
1

2

∫ +M

−M

.

Denoting by m the l-measure on X , the first term of the right-hand side is
bounded by ∫

|U|>M
U2dm ≤

∫
|U|>M

∥X∥2dm ≤
∫
∥X∥>M

∥X∥2dm,

(10)We know that if X is separable and reflexive, E[∥X∥] < +∞, which is implied by
E[∥X∥2] < +∞, implies the existence of E(X).
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because |U| ≤ ∥X∥ and the domain (|U| > M) is contained in the domain
(∥X∥ > M).

By hypothesis, we can find M independent of z∗ such that∫
∥X∥>M

∥X∥2dm <
ε

2
.

Having thus chosen M, it suffices that λ0, and so λ, is small enough to have
|eiλ0α − 1| < ε

M2 for any α in (−M,+M) and then

1

2

∫ +M

−M
α2[1− eiλ0α]dFz∗(α) <

ε

2
for any Fz∗(α).

So the convergence of ω1(z
∗; λ) → 0 as λ → 0 is uniform in z∗, which

establishes the theorem.

Definition. – Given a real or complex numerical function ε(x∗), we will say
that it is positive definite if:

1◦ it is continuous in the sense of strong convergence in X ∗;
2◦ for any n, x∗

1, ..., x
∗
n and complex numbers α1, ...,αn, we have that

n∑
j,k

φ(x∗
j − x∗

k)αjᾱk is real and non-negative.

Theorem 5. – Every characteristic function is positive definite.

We saw that it is continuous (Theorem 2). The second condition is also
satisfied; indeed,

0 ≤ |α1u1 + ...+ αnun|2 = (α1u1 + ...+ αnun)(α1u1 + ...+ αnun)

= (α1u1 + ...+ αnun)(ᾱ1ū1 + ...+ ᾱnūn)

=

n∑
j,k

αjᾱkuj ūk;

it then suffices to take uj = eix
∗
j (X):

uj ūk = eix
∗
j (X)e−ix∗

k(X) = ei[x
∗
j (X)−x∗

k(X)]

and then ∑
j,k

αjᾱke
i[x∗

j−x∗
k](X) being real and non-negative

means that

E

∑
j,k

. . .

 =
∑
j,k

αjᾱkφ(x
∗
j − x∗

k) is real and non-negative.

Remark. – Straight from the definition of the characteristic function we have
that φ(0∗) = 1 and that

φ(−x∗) = φ(x∗).
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We are going to see that if a function φ(x∗) satisfies the condition∑
j,k

αjᾱkφ(x
∗
j − x∗

k) is real and non-negative

for any n, x∗
1, ..., x

∗
n and α1, ...,αn, then φ(0∗) is real and non-negative, and is

zero only if φ ≡ 0:
φ(−x∗) = φ(x∗);

if φ is continuous at the origin, it is continuous everywhere and also if φ(x∗) →
φ(0∗) when x∗ tends weakly to 0∗, then φ(y∗ − x∗) tends to φ(y∗) for any y∗

when x∗ → 0∗.
Let us take n = 2:

α1ᾱ2φ(x
∗
1−x∗

2)+ᾱ1α2φ(x
∗
2−x∗

1)+[|α1|2+|α2|2]φ(0∗) is real and non-negative;

if x∗
2 = 0∗:

α1ᾱ2φ(x
∗
1) + α2ᾱ1φ(−x∗

1) + [|α1|2 + |α2|2]φ(0∗) is real and non-negative;

α2 = 0 shows that φ(0∗) is real and non-negative.
α1 = α2 = 1:

φ(x∗
1) +φ(−x∗

1) is real,

so
Iφ(x∗

1) = −Iφ(−x∗
1).

α1 = i,α2 = 1:
iφ(x∗

1)− iφ(−x∗
1) is real,

so
Rφ(x∗

1) = Rφ(−x∗
1),

so
φ(−x∗) = φ(x∗).

Let us take n = 3:

α1 = 1, α2 = −1, α3 = λ, x∗
1 = 0∗, x∗

2 = x∗, x∗
3 = y∗.

We have

[2 + |λ|2]φ(0∗)−φ(x∗)−φ(−x∗)

+ λ[φ(y∗)−φ(y∗ − x∗)] + λ̄[φ(−y∗)−φ(x∗ − y∗)] ≥ 0.

By letting A = φ(y∗)−φ(y∗ − x∗), we have

[2 + |λ|2]φ(0∗)−φ(x∗)−φ(−x∗) + λA + λA ≥ 0

and by taking λ = − Ā
φ(0∗) ,

|A|2

φ(0∗)
− |A|2

φ(0∗)
− |A|2

φ(0∗)
+ 2φ(0∗)−φ(x∗)−φ(−x∗) ≥ 0.

Then
|φ(y∗)−φ(y∗ − x∗)|2 ≤ φ(0∗)[2φ(0∗)−φ(x∗)−φ(−x∗)],

41



which shows that φ(0∗) cannot be zero unless φ is identically zero, and that if
φ is continuous at the origin, it is continuous everywhere and even uniformly
continuous everywhere, and also that if φ(x∗) → φ(0∗) when x∗ converges
weakly to 0∗, we have φ(y∗ − x∗) → φ(y∗) for any y∗ as x∗ → 0∗ weakly.

Definition of a cylindrical set. – A cylindrical set En of X is defined as
the set of all the x ∈ X such that

[x∗
1(x), ..., x

∗
n(x)] ∈ En

where En is a measurable set in the Euclidean space Rn with n dimensions.

Definition of the field B. – All the cylindrical sets are L-measurable;
they form a field C ; if F is the σ-algebra in the definition of the L-measure m,
we have

C ⊂ F .

Let B be the smallest σ-algebra containing C , we necessarily have B ⊂ F .
Now, a completely additive function on a field can be uniquely extended to the
smallest σ-algebra which contains it [Kolmogoroff]; so: the knowledge of m on
C determines m on B. Let us note that C and B have a geometric meaning
independent of m and that they do not depend on the norm in the sense of page
3 (Chapter I).

Theorem. – If X is separable, B contains the spheres and all the sets
defined by f(x) < a, where a is a real number and f a continuous real function
defined for x ∈ X . More generally, B contains all the open sets ⊂ X .

1◦ Case of f(x) = ∥x∥. – The proof consists of proving that every sphere S
with centre 0 belongs to B. The proof is analogous to that of Pettis [Pettis, I].

Let us denote by x̄∗ the x∗ such that ∥x∗∥ = 1 and let Γ be the set of x̄∗.
Let Ax̄∗ be the set defined by

∣∣x̄∗(x)
∣∣ ≤ a; the sphere S defined by ∥x∥ ≤ a is

the product
∏

Ax̄∗ , where the product is extended to every x̄∗ ∈ Γ (there are
uncountably many Ax̄∗).

Indeed,
∏

Ax̄∗ ⊂ S: let x ∈
∏

Ax̄∗ , and let x̄∗
0 be a functional x̄∗ such

that x̄∗
0(x) = ∥x∥. Then by hypothesis, we have: x̄∗

0(x) ≤ a, so ∥x∥ ≤ a and
S ⊂

∏
Ax̄∗ , because if ∥x∥ ≤ a,∣∣x̄∗(x)

∣∣ ≤ ∥x̄∗∥ · ∥x∥ = 1 · a = a.

As X is separable, there exists a countable sequence
{
x̄∗
i

}
of x̄∗ weakly dense

in Γ [Banach, I, p.124]. Let Ai be the set defined by∣∣x̄∗
i (x)

∣∣ ≤ a

and A =
∏

i Ai. A is a product of countably many cylindrical sets Ai, so it is
in B.

We have
A =

∏
Ax̄∗ = S.

Firstly, ∏
Ax̄∗ ⊂ A =

∏
i

Ai,
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which is evident since
∏

Ax̄∗ is extended to all x̄∗ ∈ Γ and since
∏

i Ai is
extended to x̄∗ ∈

{
x̄∗
i

}
, a countable subset of Γ.

On the other hand, if x1 ∈ A does not belong to
∏

Ax̄∗ , we would have:∣∣x̄∗
i (x1)

∣∣ ≤ a for all i

and ∣∣x̄∗(x1)
∣∣ > a for at least one x̄∗;

let x̄∗
0 be such a x̄∗, and

{
x̄∗
i′

}
a subsequence of {x̄∗

i } converging weakly to x̄∗
0:∣∣x̄∗

0(x)
∣∣ = lim

∣∣x̄∗
i′(x)

∣∣ for every x ∈ X ,

so ∣∣x̄∗
0(x1)

∣∣ = lim
∣∣x̄∗

i′(x1)
∣∣ ≤ a, contradiction.

So
A ⊂

∏
Ax̄∗ .

As a consequence,
A =

∏
Ax̄∗ .

We saw that ∏
Ax̄∗ = S,

so
A =

∏
Ax̄∗ = S,

so S is in B.

2◦ Case of f(x) = ∥x− x0∥. – Spheres of centre x0, same proof.

3◦ Case of arbitrary f(x). – The set defined by f(x) < a is open. Now,
every open subset Ω of a separable space X is the union of countably many
spheres.

Indeed, as X is separable, let {xn} be a countable dense sequence in X
and let x′

n those of xn that are in the interior of Ω. Let S
(
x′
n;

1
k

)
be the sphere

with centre x′
n and of radius 1

k (with k an integer). Among these spheres, some
are completely contained in Ω: these are the S1; the others have some points
outside Ω. Let A be the union of the S1. There are a countably infinite number
of S1 and every sphere is in B, so A is in B.

We have A = Ω; to prove this, it suffices to show that every x ∈ Ω belongs
to an S1. Now, x belongs to S

(
x′
n;

1
k

)
if ∥x′

n − x∥ ≤ 1
k and this sphere is an S1

if 2
k < δ, where we denoted by δ the lower bound of ∥x− y∥ as y runs through

the boundary of Ω. So it suffices to take 1
k < δ

2 , then x′
n close enough to x so

that ∥x′
n − x∥ ≤ 1

k , which is possible since we have a dense sequence.
So every set defined by f(x) < a and more generally every open set is in B.

Remark. – From the very definition of the characteristic function,

φ(x∗) = E[eix
∗(X)]

we have that every L-measure on X , strictly speaking, defines a unique char-
acteristic function; conversely, we are going to see that
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Theorem 6. – The characteristic function determines the L-measure on
every cylindrical set, and so on B.

Let X∗ = x∗(X) if we know φ(x∗) = E[eix
∗(X)], we know the characteristic

function φ1 of X∗:

φ1(ν) = E[eiνX∗
] = E[eiνx

∗(X)] = φ(νx∗),

so we know Pr[x∗(X) ∈ E1], where E1 is a measurable set on the real line.
Let x∗

1, ..., x
∗
n and X∗

1 = x∗
1(X), ...,X∗

n = x∗
n(X), we know φ(x∗), so we know

the characteristic function φ1(ν1, ..., νn) of the random variable with n dimen-
sions {X∗

1, ...,X
∗
n}:

φ1(ν1, ..., νn) = E[ei(ν1X∗
1+...+νnX∗

n)] = φ(ν1x
∗
1 + ...+ νnx

∗
n).

So we know the measure on every cylindrical set, and so on B.

Remark. – The proof of the preceding theorem relies on the well-known
property that in a Euclidean space with a finite number of dimensions, the
characteristic function completely defines the probability law of the random
point. It is likewise true in the case of a Banach space X possessing a base,
that is to say, such that there exists a countable sequence of distinct elements
e1, ..., en, ... of X such that, for any x ∈ X , there is a unique sequence of
numbers x1, ..., xn, ... such that

x = x1e1 + ...+ xnen + ...,

with limn→∞∥x− x(n)∥ = 0 by letting

x(n) = x1e1 + ...+ xnen.

Knowing φ(x∗) for every x∗, we know in particular:

φ(x∗
n) = E[ei[t1X1+...+tnXn]]

which is the characteristic function of the point X(n) in Rn and determines the
distribution function of X(n). Let

Fn(x1, ..., xn) = Pr[X1 < x1, ...,Xn < xn];

if we set
F(x1, ..., xn, ...) = Pr[X1 < x1, ...,Xn < xn, ...],

we have
F(x1, ..., xn, ...) = lim

n→∞
Fn(x1, ..., xn).

So the characteristic function φ(x∗) then completely determines the law of X.

Generalisation of Bochner’s theorem [Bochner, II, p.239]. – We know
that the characteristic function of an ordinary random variable is a positive defi-
nite function which equals 1 at the origin, and we also know that, conversely, ev-
ery positive definite function φ such that φ(0) = 1 is the characteristic function
of a probability law. In the case of a random element X with values in a Banach
space X , we just saw that the characteristic function of X, φ(x∗) = E[eix

∗(X)],
is again a positive definite function, and φ(0∗) = 1. We are thus led to ask
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ourselves whether every positive definite function φ(x∗) such that φ(0∗) = 1 is
the characteristic function of a random element (in the proper sense) on B.

So let φ(x∗) be a positive definite function on X ∗ and such that φ(0∗) = 1.
Let x∗

1, ..., x
∗
n be n deterministic linear functionals that are linearly independent,

and let
x̄∗ = ν1x

∗
1 + ...+ νnx

∗
n,

where ν1, ..., νn are any n real numerical variables; φ(x̄∗) considered as a func-
tion of ν1, ..., νn is a positive definite function with n dimensions, in a Euclidean
space with n dimensions, and it takes value 1 if ν1 = ν2 = ... = νn = 0; so it is a
characteristic function in n dimensions (Bochern-Weil) and it defines, as a con-
sequence, a distribution function in n dimensions: Fn(x

∗
1, x1;x

∗
2, x2; ...;x

∗
n, xn).

Fn has the following properties:

1◦ As a function of the pairs (x∗
j , xj), it is a symmetric function;

2◦ As a function of x1, ..., xn, it is a distribution function;
3◦ Moreover, we have

Fn+1(x
∗
1, x1; ...;x

∗
n, xn;x

∗
n+1,+∞) = Fn(x

∗
1, x1; ...;x

∗
n, xn).

Indeed,

φ(x̄∗+νn+1x
∗
n+1) =

∫
ei(ν1x1+...+νn+1xn+1)dFn+1(x

∗
1, x1; ...;x

∗
n, xn;x

∗
n+1, xn+1);

if νn+1 = 0,

φ(x̄∗ + 0) = φ(x̄∗) =

∫
ei(ν1x1+...+νnxn)dFn+1(x

∗
1, x1; ...;x

∗
n+1, xn+1).

By integrating with respect to xn+1,

φ(x̄∗) =

∫
ei(ν1x1+...+νnxn)dΦ(x∗

1, x1, ..., x
∗
n, xn)

by letting
Φ(x∗

1, x1; ...;x
∗
n, xn) = Fn+1(...x

∗
n, xn;x

∗
n+1,+∞),

but by the definition of Fn:

φ(x̄∗) =

∫
ei(ν1x1+...+νnxn)dFn(x

∗
1, x1; ...;x

∗
n, xn),

so

Fn(x
∗
1, x1; ...;x

∗
n, xn) = Φ(x∗

1, x1; ...;x
∗
n, xn)

= Fn+1(x
∗
1, x1; ...;x

∗
n, xn;x

∗
n+1,+∞).

Let En be a cylindrical set in X , defined as the set of all the x ∈ X such that

{x∗
1(x), ..., x

∗
n(x)} ∈ En,

where En is a Borel measurable set in the Euclidean space Rn with n dimensions.
Fn defines a measure in Rn for which En is measurable; let µ(En) be its measure
and let

m(En) = µ(En),
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we thus define a set function m(ϵ) on the field of cylindrical sets in X ; we see
without difficulty that

1◦ m(X ) = 1;
2◦ m(En) ≥ 0;
3◦ m(E ) +m(E ′) = m(E + E ′) if E and E ′ are two disjoint cylindrical sets

[Kolmogoroff, I, p.27].

It remains to see if m(E ) is completely additive (on the field of cylindrical
sets) or, equivalently, to try to prove that if E 1,E 2, ...,E k, ... are cylindrical sets
such that

E 1 ⊃ E 2 ⊃ ... ⊃ E k ⊃ ...

and if limk→∞ m(E 1) = L > 0, E 2 = limk→∞ E k is not empty.
Let {x∗

j}(j = 1, 2, ...) be any sequence of linear functionals of norm 1 and
such that any finite number of these functionals are linearly independent. Let
S(a) be the sphere of X of centre 0 and of radius a. Let An be the set of points
of Rn of coordinates α1, ...,αn such that the system

x∗
1(x) = α1, ..., x∗

n(x) = αn

has at least one solution x such that ∥x∥ ≤ α.

If X is reflexive, An is closed. – First, An is bounded, which is obvious
since

αj = x∗
j (x) ≤ ∥x∗

j∥ · ∥x∥ ≤ α;

then, let Pk(αk
j ) be a sequence of points in An converging to a point P in Rn

with coordinates (αj), so αk
j → αj . We have P ∈ An, that is to say, there exists

an x ∈ S(a) such that

x∗
j (x) = αj , (j = 1, 2, ..., n).

A necessary and sufficient condition for that (E.Hille, I, p.21) is that, for any
numbers aj (j = 1, 2, ..., n), we have

(1)

∣∣∣∣∣∣
n∑

j=1

ajxj

∣∣∣∣∣∣ ≤ a

∥∥∥∥∥∥
n∑

j=1

ajx
∗
j

∥∥∥∥∥∥ ,
but the same theorem implies that, since Pk ∈ An,

(2)

∣∣∣∣∣∣
n∑

j=1

ajα
k
j

∣∣∣∣∣∣ ≤ a

∥∥∥∥∥∥
n∑

j=1

ajx
∗
j

∥∥∥∥∥∥ .
To obtain (1), it suffices to let k tend to +∞ in (2).
Let An be the set of the x ∈ X such that the point P in Rn with coordinates

[x∗
1(x), ..., x

∗
n(x)] belong to An. We obviously have

An ⊃ S(a).

An is a cylindrical set, closed in X ; it is not bounded in general; since it is
closed, if x1, ..., xk, ... ∈ An and if xk → x, x belongs to An.
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Every cylindrical set En defined by x∗
1, ..., x

∗
n which contains S(a) contains

An.
On the other hand, An+1 ⊂ An; indeed, if x0 ∈ An+1, the numbers αj

(j = 1, 2, ..., n+ 1) defined by

x∗
j (x0) = αj (j = 1, 2, ..., n+ 1)

are such that the equations

x∗
j (x) = αj (j = 1, 2, ..., n+ 1)

admit at least one solution x′ such that ∥x′∥ ≤ a, so the equations

x∗
j (x) = αj (j = 1, 2, ..., n)

admit a solution x′ ∈ S(a), so x ∈ An.

Remark. – If Rn+1 corresponding to x∗
1, ..., x

∗
n, x

∗
n+1 is constructed as a

product of Rn corresponding to x∗
1, ..., x

∗
n and a straight line, An is the projection

parallel to this straight line, from Rn+1 onto Rn.
Let

L = lim
n→+∞

An, L =
∏
i

Ai and L ⊃ S(a).

If the sequence {x∗
i } is dense on the sphere of radius 1 on X ∗ (which implies

that X ∗, and so X is not only reflexive, but also separable), L = S(a).
Indeed, if x0 ∈ L is not in S(a) we would have ∥x0∥ > a and

|x∗
i (x0)| = |xi| ≤ a for all i;

but, on the other hand, there exists [E. Hille, I, theorem 2.9.3] x∗ ∈ X ∗ such
that

x∗(x0) = ∥x0∥ and ∥x∗∥ = 1.

As the sequence {x∗
i } is dense on the unit sphere, let {x∗

i′} be a sequence
tending to x∗

|x∗(x0)| = lim|x∗
i′(x0)| ≤ a,

which contradicts
|x∗(x0)| = ∥x0∥ > a.

So L ⊂ S(a), and since we always have L ⊃ S(a):

L = S(a).

Let us now take these conditions, and let ρ(a) be the limit as n → +∞ of
m(An); then m(An+1) ≤ m(An). We will say that φ(x∗) satisfies the condition
C if, for any sequence {x∗

i } dense on the unit sphere of X ∗, lima→+∞ ρ(a) = 1.
It is clear that

ρ(a) ≤ ρ(a′) if a < a′.

Let us consider the cylindrical sets E k such that

E 1 ⊃ E 2 ⊃ ...E k ⊃ E k+1 ⊃ ... and limm(E k) = l.
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We are going to show that

lim
k

E k = lim

Bk =

k∏
j=1

E j


is not empty.

We do not lose generality by considering a sequence of linear functionals {x∗
k}

of norm 1, such that any finite number of them are linearly independent and
such that the functionals defining εk are x∗

1, ..., x
∗
k. Let En be the corresponding

set in Rn of En; we set
m(En) = µ(En).

We can find in Rn a bounded closed set Dn contained in En such that

µ(Dn) ≥ µ(En)−
ε

2n
;

Dn defines in X a cylindrical set Dn ⊂ En, closed but not necessarily bounded
and

m(Dn) ≥ m(En)−
ε

2n
.

Let Cn =
∏n

k=1 Dk and let wn be in Rn defining Cn; wn is closed, bounded,
contained in Dn:

m(Cn) ≥ m(Bn)− ε ≥ l − ε,

so
µ(wn) ≥ l − ε.

Let S(a) be the sphere in X of radius a and let us take a sequence of linear
functionals of norm 1, dense on the sphere of radius 1 in X ∗, such that any
finite number of these functionals are linearly independent, and such that it
contains {x∗

n} as a partial sequence; we do not lose generality by assuming that
these are the x∗

n themselves. Let us consider the sets Cn · S(a); if none of them
is empty, they have a non-empty limit. Indeed, if C · S(a) is assumed to be
non-empty for any n, let xn ∈ Cn · S(a), then the sequence xn is bounded since
xn ∈ S(a); as X is reflexive, a subsequence, which we will assume to be the
sequence itself, has a weak limit x; let αn

j = x∗
j (xn) and let Pn

k be the point
in Rk with coordinates (α1, ...,α

n
k ), then Pn

k ∈ wk because xn ∈ Ck · S(a) for
k ≤ n at least, so xn ∈ Ck. If Pk is the point in Rk with coordinates αj = x∗

j (x)
(j = 1, 2, ..., k), Pk = limn→∞ Pn

k , so Pk ∈ wk, so x ∈ Ck, and this holds for all
k, so x belongs to limn→∞ Cn, so a fortiori x belongs to limn→∞ En which is
thus not empty.

Let us assume that CN · S(a) is empty, so Cn · S(a) is empty for any n ≥ N .
I say that if Cn · S(a) is empty, CnAl is empty, at least for l ≥ n. Cn can be
represented in R by an “extension” w′

n of wn, and if w′
n and Al have a common

point P there is a x ∈ S(a) which is in Cn, which contradicts the hypothesis, so
w′

n and Al do not have a common point, so CnAl = 0 and then as Cn is outside
Al (for any l ≥ n)

m(Cn) = m[X − Al] = 1−m(Al),

so
m(Al) ≤ 1−m(Cn) ≤ 1− l + ε,
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so
ρ(a) ≤ 1− l + ε.

If we took a sufficiently large so that ρ(a) > 1 − ε – which is possible by
virtue of condition C – and ε < l

2 , there is a contradiction, so Cn · S(a) is not
empty and we can state the following theorem:

Theorem 7. – If X is separable and reflexive, a necessary and sufficient
condition for a positive definite function φ(x∗) with φ(0∗) = 1 is a characteristic
function of a random element in the strict sense, is that φ(x∗) satisfies condition
C.

That condition C is sufficient results from the preceding proof, and the
necessity is obvious since:

a. If X is separable and reflexive, ∥x∥ is measurable, that is to say, that
m[S(a)] exists for any a;

b. and that m[S(a)] → 1 if a → ∞ if X is a random variable in the strict
sense. Condition C poses two problems.

Problem 1. – We can ask ourselves if every positive definite function φ(x∗)
with φ(0∗) = 1 satisfies condition C. We know that it is so if X is a Euclidean
space with any finite dimension, say n. An example will show that this does
not remain true in the general case.

Let X be the Hilbert space, reflexive and separable, of the sequence of real
numbers x = (x1, ..., xk, ...) such that

∑
k|xk|2 < +∞; let x∗

k be the linear
functional defined by x∗

k(x) = xk; every linear functional is of the form x∗ =∑
k akx

∗
k.

Set
φ(x∗) = e−

∥x∗∥2
2 ,

we see immediately that

a. φ(0∗) = 1;
b. φ(x∗) → 1 if x∗ → 0∗.

Moreover, for any x∗
(1), ..., x

∗
(h) and any real or complex numbers α1, ...,αh,

we have that ∑
gj

φ[x∗
(g) − x∗

(j)]αgᾱj is real and non-negative.

Let X1, ...,Xk, ... be mutually independent Laplacian ordinary random vari-
ables with zero mathematical expectation and variance 1; to every

x∗ =
∑
k

akx
∗
k with

∑
k

|ak|2 < +∞,

we associate the random variable Y =
∑

k akXk. This series is convergent almost
surely, and also in square-mean since

∑
k|ak|2 < +∞. Y is Laplacian, and

∥x∗∥2 =
∑

|ak|2,

so
E(eiY ) = e−

∑
|ak|2
2 = φ(x∗).

49



If Y(j) is the random variable corresponding to x(j), we see that

φ[x∗
(g) − x∗

(j)] = E[eY(g)−Y(j) ],∑
gj

φ[x∗
(g) − x∗

(j)]αgᾱj =
∑
gj

E[αgᾱje
j(Y(g)−Y(j))] =

∑
gj

E[αge
iY(g)αje

iY(j) ]

= E

∑
gj

αge
iY(g)αje

iY(j)

 = E


∣∣∣∣∣∣
∑
gj

αje
iY(j)

∣∣∣∣∣∣
2
 ≥ 0.

As a consequence, φ(x∗) is positive definite. But φ(x∗) does not satisfy condi-
tion C. Indeed, with the sequence [x∗

k], let us construct the Ak of the proof of
the preceding theorem; we remark that An is defined by

n∑
k=1

|xk|2 ≤ a2 or
n∑

k=1

|x∗
k(x)|2 ≤ a2.

The above interpretation of φ(x∗) with the random variables Y shows that

m(An) = Pr

 n∑
k=1

|Xk|2 ≤ a2

 = P(a, n).

The calculation of P(a, n) is elementary; it shows that

lim
n→∞

P(a, n) = 0 for any a.

Moreover, this is obvious because the series
∑

k|Xk|2 with positive terms is
almost surely divergent; for every definition of ρ(a) that affects all the x∗

k, we
have ρ(a) ≤ limn→∞ P(a, n), so ρ(a) = 0 for any a.

Remark. – In the above example, let us make the following modification: let
us assume that the variance of Xk is 1√

k
instead of 1 and set

φ(x∗) = E[eiY], where Y =
∑

akXk.

Then Y is Laplacian and

E(Y) = 0, E(Y2) =

∑
k

a2k
k

 ,

so
φ(x∗) = e−

∑ a2
k

2k .

φ(x∗) is continuous with respect to weak convergence in X ∗; to show this, it
suffices to show that ρ(x∗) → 1 if x∗ → 0∗ weakly; if x∗ converges weakly to 0∗,∑

k a
2
k is bounded, say by M, and ak for a fixed k converges to zero:

∑
k

a2k
k

=

P∑
k=1

a2k
k︸ ︷︷ ︸

A

+
∑
k>P

a2k
k︸ ︷︷ ︸

B

.

We have B ≤ 1
PM, A → 0 for any fixed P.

If we took P to be large enough, the exponent of e−
∑ a2

k
k is arbitrarily small.
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C.Q.F.D.

But, on the other hand, as the series
∑

k
1
k is divergent,

∑
k|Xk|2 is almost

surely divergent, so P(a, n) → 0 for any a.
So the fact that positive definite φ(x∗) is continuous with respect to weak

convergence for x∗ does not suffice to imply that φ(x∗) satisfies condition C.

Problem 2. – Given these examples, we should investigate simple criteria
allowing us to recognise if a positive definite function φ(x∗) satisfies condition
C or not.

Let X be a reflexive and separable Banach space, andφ1(x
∗),φ2(x

∗), ...,φn(x
∗), ...

a sequence of characteristic functions such that:

a. There exist positive α and s such that, for any n,

En[∥X∥α] = sαn < sα;

b. limn→+∞φn(x
∗) = φ(x∗);

c. There exists A such that, for any x∗ satisfying ∥x∗∥ ≤ A:

|φn(x
∗)−φ(x∗)| → 0 uniformly in x∗.

φ(x∗) is obviously positive definite.
Let us consider the law Ln corresponding to the characteristic function φn,

then Bienaymé’s inequality gives

Pr(n)[∥X∥ < a] > 1− sαn
aα

(apositive).

Using the notations of generalised Bochner’s theorem, we have, for any k,

Pr(n)[X ∈ Ak] = mn(Ak) = µn(Ak) > 1− sαn
aα

,

lim
n→+∞

mn(Ak) = m(Ak) > 1− sα

aα

and, as a consequence,

ρ(a) = lim
k→+∞

m(Ak) > 1− sα

aα
,

lim
a→+∞

ρ(a) = 1.

Condition C is satisfied, so φ(x∗) is a characteristic function and defines a
law L; from which we have:

Theorem 8. – If a sequence of characteristic functions φn(x
∗) converges

uniformly in x∗, for every x∗ such that ∥x∗∥ ≤ A, to a function φ(x∗), if,
moreover, there exists α > 0 such that En[∥X∥α] is uniformly bounded, then
φ(x∗) is a characteristic function.

The question now is to know whether L is the limit of the laws Ln and first
the problem of defining the convergence of a sequence of laws to a limit law.

Example. – Let be a separable Hilbert space and let x1, ..., xn, ... be or-
thonormal vectors, let mn be the l-measure formed by placing mass 1 on xn

and nowhere else; its characteristic function φn(x
∗) is

φn(x
∗) = eix

∗(xn).
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If x∗ is fixed and arbitrary and n tends to +∞, x∗(xn) → 0, so φn(x
∗) → 1

which is the characteristic function of a mass 1 concentrated at 0: we see that
mn does not tend to this distribution although there is the convergence of the
characteristic functions.

Chapter IV.
Laplacian Random Elements.

I. – Definition of Laplacian Random Elements.

Definition. – A random element X in the strict sense, with values in a Banach
space X is a Laplacian random element if x∗(X) is a Laplacian random number
for any functional x∗ ∈ X ∗ [E. Mourier, IV].

This definition of a Laplacian random element has already been proposed by
M. Fréchet [M. Fréchet, IV] and compared by this author to a second definition,
deduced from the generalisation of a theorem of S. Bernstein, which assumes
the existence of E[∥X∥2]. A recent result of M.G.Darmois [G.Darmois, I] allows
the removal of this hypothesis. It is then possible to show the equivalence of the
two definitions for any Banach space X . It is this that we propose to do in what
follows. For this, we will need to establish some characteristic properties of the
independence of two random elements whose definition was given in Chapter II
(page 10).

Theorem 1. – For two random elements X1 and X2 to be independent, it
is necessary and sufficient that for every x∗

1, x
∗
2 ∈ X ∗

1 × X ∗
2 the characteristic

function of the pair X1,X2 to be the product of the characteristic functions of
X1 and X2, that is to say, that

Φ(x∗
1, x

∗
2) = φ1(x

∗
1)φ2(x

∗
2),

where φ1(x
∗
1),φ2(x

∗
2) and Φ(x∗

1, x
∗
2) are the characteristic functions of X1, X2

and of the pair X1,X2 respectively.

From the definition of the characteristic function of a random element(11),

φ1(x
∗
1) = E[eix

∗
1(X1)] =

∫
X1

eix
∗
1(X1)dµ1(ϵ1),

a function of x∗
1 defined for every x∗

1 ∈ X ∗
1 .

Likewise, the characteristic function of X2 is

φ2(x
∗
2) = E[eix

∗
2(X2)] =

∫
X2

eix
∗
2(X2)dµ2(ε2),

a function of x∗
2 defined for every x∗

2 ∈ X ∗
2 .

And the characteristic function of X1,X2 ∈ X1 × X2 is

Φ(x∗
1, x

∗
2) = Eei[x

∗
1(X1)+x∗

2(X2)]

=

∫
X1×X2

ei[x
∗
1(x1)+x∗

2(x2)]dλ(ε1 × ε2)

(11)The notations follow those of Chapter II.
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defined for all x∗
1, x

∗
2 ∈ (X1 ×X2)

∗ ≃ X ∗
1 ×X ∗

2 (Chapter II, page 10). Indeed,
every linear functional z∗ on X1 × X2 is of the form

(1) z∗(x1, x2) = x∗
1(x1) + x∗

2(x2);

first, (1) is indeed a linear functional on X1 × X2. It is additive since x∗
1(x1)

and x∗
2(x2) are additive, and

|z∗(x1, x2)| ≤ ∥x∗
1∥ · ∥x1∥+ ∥x∗

2∥ · ∥x2∥.

If ∥x1, x2∥ stays finite, then ∥x1∥ and ∥x2∥ stay finite, so |z∗(x1, x2)| stays finite,
so the functional is bounded.

Then, every linear functional on X1 × X2 is of type (1). Indeed,

z∗(x1, x2) = z∗(x1 + 0, 0 + x2) = z∗(x1, 0) + z∗(0, x2).

If X1 and X2 are independent,

λ(ε1 × ε2) = µ1(ε1)× µ2(ε2)

for any ε1 ∈ F1 and ε2 ∈ F2, so [P.R.Halmos, I, p.146]

Φ(x∗
1, x

∗
2) =

∫ ∫
X1×X2

eix
∗
1(x1)eix

∗
2(x2)dµ1(ε1)dµ2(ε2)

(2)

=

∫
X1

eix
∗
1(x1)dµ1(ε1)

∫
X2

eix
∗
2(x2)dµ2(ε2), Φ(x∗

1, x
∗
2) = φ1(x

∗
1)φ2(x

∗
2).

Conversely, if the characteristic function of X1,X2 is of the form (2) for any
x∗
1, x

∗
2 ∈ X ∗

1 × X ∗
2 , X1 and X2 are independent random elements, indeed the

characteristic function determines the measure on the smallest σ-algebra which
contains the collection of cylindrical sets.

Let us remark that if a characteristic function Φ(x∗
1, x

∗
2) is the product of a

function in x∗
1 by a function in x∗

2,

Φ(x∗
1, x

∗
2) = f(x∗

1)g(x
∗
2),

f(x∗
1) and g(x∗

2) are necessarily characteristic functions of X1 and X2 respec-
tively; to see this, it suffices to let x∗

1 = 0∗ or x∗
2 = 0∗.

Theorem 2. – For two random elements X1 and X2 to be independent, it
is necessary and sufficient that, for any x∗

1 ∈ X ∗
1 and x∗

2 ∈ X ∗
2 , x∗

1(X1) and
x∗
2(X2) to be independent random variables.

That the condition is necessary is obvious; that it is sufficient follows from
the preceding theorem and the theorem on the mathematical expectation of the
product of independent random variables.

Indeed,

Φ(x∗
1, x

∗
2) = Eei[x

∗
1(X1)+x∗

2(X2)]

= E[eix
∗
1(X1)eix

∗
2(X2)]

= φ1(x
∗
1)φ2(x

∗
2).
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Theorem 3. – If X is a random element in X such that E(X) = 0, if X∗

is a random element in X ∗ and if X and X∗ are independent,

E[X∗(X)] = 0.

Indeed,
E[X∗(X)] = E[E[X∗(X)/X∗]];

and for any fixed x∗,

E[X∗(X)/X∗ = x∗] = x∗[E(X)] = 0,

since, by hypothesis, E(X) = 0.

Theorem 4. – If X∗ is a random element in X ∗ such that E(X∗) = 0∗, if
X a random element in X and if X and X∗ are independent,

E[X∗(X)] = 0.

Indeed, we know that [E. Hille, I, p.22] that to all x ∈ X we can associate
x∗∗ ∈ X ∗∗ such that for all x∗ ∈ X ∗ we have

x∗(x) = x∗∗(x∗).

We thus have
E[X∗(X)] = E[X∗∗(X∗)];

but, according to the preceding theorem, if E(X∗) = 0∗, we have

E[X∗∗(x)] = 0

and, as a consequence,
E[X∗(X)] = 0.

Properties of Laplacian elements. – If X1, ...,Xn are independent Lapla-
cian random elements taking values in X , x0 an element in X and a0, a1, ..., an
some numbers, Z = a0x0 + a1X1 + ...+ anXn is Laplacian.

Indeed,
x∗(Z) = a0x

∗(x0) + a1x
∗(X1) + ...+ anx

∗(Xn),

and according to a classical theorem of calculus of probabilities, x∗(Z) is Lapla-
cian and this holds for all x∗, so Z is a Laplacian element.

Conversely, if Z = aX + bY is Laplacian and if ab is not zero, then if X and
Y are independent they are also Laplacian; indeed,

x∗(Z) = ax∗(X) + bx∗(Y);

x∗(Z) is a Laplacian variable, x∗(X) and x∗(Y) are two independent variables
since X and Y are independent, they are thus Laplacian (Lévy-Cramer theorem),
so X and Y are Laplacian elements.

Let X be a Laplacian element and x∗ an arbitrary element in X ∗. Denote
by σ2x∗ the fluctuation of x∗(X),

σ2x∗ = E{x∗(X)− E[x∗(X)]}2;
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x∗(X) is a Laplacian random variable so E[x∗(X)] and σ2x∗ exist and its charac-
teristic function φx∗(v) is

(1) φx∗(v) = E[eivx
∗(X)] = eivE[x∗(X)]− 1

2v
2σ2

x∗ ,

but, denoting by φ(x∗) the characteristic function of X,

φx∗(v) = E[eivx
∗(X)] = ϕ(vx∗),

(1) can be written as

φx∗(v) = eiE[vx∗(X)]− 1
2σ

2
vx∗ = φ(vx∗)

and so for every x∗ ∈ X ∗,

(2) φ(x∗) = eiE[x∗(X)]− 1
2σ

2
x∗ .

Conversely, assume that X is a random element whose characteristic function is
of the form (2). For any x∗ ∈ X ∗, the characteristic function of x∗(X) is

φx∗(v) = φ(vx∗) = eiE[vx∗(X)]− 1
2σ

2
vx∗ = eivE[x∗(X)]− 1

2 v
2σx∗ ,

so x∗(X) is a Laplacian random variable and X is a Laplacian random element.
The theorem of S. Bernstein on which M. Fréchet is based is the following:

For two independent random numbers X and Y, each with a probability den-
sity defined everywhere and having the same non-zero and finite fluctuation σ2,
to be two Laplacian variables, it is necessary and sufficient that the two variables
X + Y and X − Y are independent.

Using a proof that is different to that of S. Bernstein, M. Fréchet extends
this proposition to the case where we do not assume the existence of a density,
he defines the fluctuation of a random element with values in a complete metric
space as being the lower bound of the square of the mathematical expectation
of the distance between X and a as a ranges through the space. He shows that
if X, taking values in a Banach space X , is such that

1◦ its fluctuation is finite;
2◦ there exists in the same space X another element Y independent of X

and such that X + Y and X − Y are independent, X is Laplacian.

Conversely, M. Fréchet shows that if X possesses a base and if Y is Laplacian
there exists a random element Y independent of X such that X + Y and X − Y
are independent.

Theorem of G. Darmois. – Two independent random variables X and Y
are necessarily Laplacian if X + Y and X − Y are independent.

Theorem. – If X is any Banach space, the necessary and sufficient con-
dition for a random element X with values in X to be Laplacian is that there
exists a random element Y with values in X , independent of X and such that
X + Y and X − Y are independent.

The condition is sufficient. Indeed, if X and Y are independent, as well as
X+Y and X−Y, x∗(X) and x∗(Y) are likewise independent as well as x∗(X+Y)
and x∗(X − Y) (c.f. Theorem 2, page 53).
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Now,
x∗(X + Y) = x∗(X) + x∗(Y),

for any x∗ ∈ X ∗ and

x∗(X − Y) = x∗(X)− x∗(Y).

So, by G. Darmois’s theorem, the random number x∗(X) is Laplacian for
any x∗ ∈ X ∗, and as a consequence, X is Laplacian.

The condition is necessary. Indeed, let X be a Laplacian random element
and Y a random element independent of X with the same law. Let φ(x∗) be
the characteristic function of X,

φ(x∗) = eiE[x∗(X)]− 1
2σ

2
x∗ (x∗ ∈ X ∗).

Let U = X + Y and V = X − Y. Then U and V are two Laplacian random
elements with values in the same space X . Denote their characteristic functions
by φU and φV and by φU,V that of the pair U,V. As X and Y are independent
and of the same law,

φU(x
∗) = [φ(x∗)]2 = ei2E[x∗(X)]−σ2

x∗ ,

φV(y
∗) = e−σ2

y∗ ,

so
φU(X

∗) = φV(y
∗) = ei2E[x∗(X)]−σ2

x∗−σ2
y∗ .

On the other hand,

φU,V(x
∗, y∗) = E{ei[x

∗(U)+y∗(V)]}
= E{ei[x

∗(X)+x∗(Y)+y∗(X)−y∗(Y)]}
= E{ei[(x

∗+y∗)(X)+(x∗−y∗)(Y)]}
= E[ei(x

∗+y∗)(X)]E[ei(x
∗−y∗)(Y)]

= φ(x∗ + y∗)φ(x∗ − y∗),

because, as X and Y are independent, (x∗ + y∗)(X) and (x∗ − y∗)(Y) are also
independent for any x∗, y∗ ∈ X ∗, so

φU,V(x
∗, y∗) = eiE[(x∗+y∗)(X)]− 1

2σ
2
x∗+y∗+iE[(x∗−y∗)(Y)]− 1

2σ
2
x∗+y∗ .

But

E[(x∗ + y∗)(X)] = E[(x∗(X) + y∗(X)] = E[x∗(X)] + E[y∗(X)],

E[(x∗ − y∗)(Y)] = E[(x∗ − y∗)(X)] = E[x∗(X)]− E[y∗(X)],

σ2x∗+y∗ = σ2x∗ + σ2y∗ ,

σ2x∗−y∗ = σ2x∗ + σ2y∗ ,

so
φU,V(x

∗, y∗) = ei2E[x∗(X)]−σ2
x∗−σ2

y∗ = φU(x
∗)φV(y

∗).

So U and V are independent.
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If X has zero fluctuation, X is an almost certain element of X , and con-
versely, in this case for every x∗ ∈ X ∗, x∗(X) is an almost certain number.
Conversely, M. Fréchet showed [M. Fréchet, IV] that, if X possesses a base,
x∗(X) can only be almost certainly constant if X is an almost certain element.
In the preceding theorem, if X has zero fluctuation, it suffices to take for Y
any certain element of X for X + Y and X − Y to be independent. Just as we
do in the case of random variables, we will think of an almost certain element
satisfying a singular Laplacian law.

The preceding study poses a certain number of problems: we saw that if X is
a Laplacian random element, E[x∗(X)] exists for any x∗ ∈ X ∗. It is a necessary
but not sufficient condition for the existence of E(X), so the first problem is:
what can we say about E(X)?

Then, what can we say about ∥X∥? And about E[∥X∥2]?
We saw that the characteristic function of a Laplacian element X is

φ(x∗) = eiE[x∗(X)]− 1
2E[x∗(X)−E(x∗(X))]2 ;

conversely, given a function of the form

f(x∗) = eiE[x∗(X)]− 1
2E[x∗(Y)−E(x∗(Y))]2 ,

where Y is a random element with values in X , does there exist a random
element X with values in X whose characteristic function is f(x∗)?

II. – Laplacian Random Elements in a Hilbert
Space.

We are going to study these problems in the particular case where X is a
separable Hilbert space H . We know that, then, ∥X∥ is measurable (cf. Chapter
I, page 6). There exists an orthogonal system {xi} such that every x ∈ H is of
the form

x =
∑
i

aixi

with the ai being numbers such that∑
i

|ai|2 < +∞

and
∥x∥2 =

∑
i

|ai|2.

Every linear functional x∗(x) is of the form

x∗(x) =
∑
i

αiai,

with the αi being numbers such that∑
i

|αi|2 < +∞
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and
∥x∗∥ =

∑
i

|αi|2.

If X =
∑

i Aixi is a Laplacian random element, then x∗(X) is, for every x∗ ∈
H ∗, a Laplacian random variable. Consider a functional x∗

i defined by x∗
i (x) =

ai.
x∗
i (X) = Ai is a Laplacian random variable, so for any i, E(Ai) and E[|Ai|2]

exist and are finite.
Set

mi = E(Ai), σ2i = σ2(Ai).

On the other hand, ∑
i

|Ai|2 = ∥X∥2 = ρ

converges almost surely to a random variable in the strict sense.
Let us consider the point Pn with coordinates (Ai,A2, ...,An) (cf. figure,

page 59), it is a Laplacian random point in a Euclidean space En with n di-
mensions, with orthogonal axes; let Mn be the point in En with coordinates
(m1,m2, ...,mn). Then Mn is the central point of the distribution in En. We
have

ρnn = OP
2

n =

n∑
i=1

|Ai|2 ≤ ρ2.

Let Π be the plane (in En) passing through Mn and perpendicular to OMn, it
is the diametrical plane for the ellipsoid of equidensity, so there is a probability
1
2 for Pn to be beyond Π, so a probability greater than or equal to 1

2 that
ρ2 ≥ OM

2

n.
If OM

2

n =
∑n

i=1|mi|2 was not bounded, there would be a probability greater
than or equal to 1

2 that ρ2 is not bounded, which is impossible. So∑
i

|mi|2 < +∞.

Let m be the point in H with coordinates mi. Then X and X − m are
Laplacian at the same time, and if one has a mathematical expectation, the
other also has it (Chapter I, page 4); so it suffices for us to study X−m, or else
to assume that all the mi are zero, which we will do in what follows.

Let x∗(α1,α2, ...,αi, ...),
∑

i|αi|2 < +∞, be an arbitrary functional in H ∗,
and let x∗

n(α1, ...,αn, 0, 0, 0, ...). Then x∗
n tends strongly to x∗ when n tends

to +∞, so denoting the characteristic function of X by φ(x∗), φ(x∗
n) tends,

uniformly in x∗, to φ(x∗) (cf. Chapter III, page 37).
Now, x∗

n(X) is a Laplacian random variable with zero mathematical expec-
tation and x∗(X) is a Laplacian random variable, so

E[x∗(X)] = lim
n→+∞

E[x∗
n(X)] = 0,

from which it results that 0 is the mathematical expectation of X, so

Theorem 1. – If X, taking values in a separable Hilbert space, is Laplacian,
E(X) exists.
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If X =
∑

i Aixi,

E(X) =
∑
i

E(Ai)xi.

Preliminary calculations. – Let Z be a Laplacian random variable with
zero mathematical expectation and variance σ. Let us calculate the character-
istic function φZ2 of Z2.

φZ2 =
1√
2πσ

∫ +∞

−∞
eivz

2

e−
z2

2σ2 dz =
1√
2πσ

∫ +∞

−∞
e−

z2

2σ2 (1−2ivσ2)dz.

Set

z =
σ√

1− 2ivσ2
u,

φZ2 =
1√

2π
√
1− 2ivσ2

∫ +∞

−∞
e−

u2

2 du

φZ2 =
1√

1− 2ivσ2
.

Let X =
∑

i Aixi be a Laplacian random element in H such that E(Ai) = 0
for any i, and let Pn be the point in En with coordinates (A1, ...,An); the Ai are
Laplacian random variables, but not necessarily independent. In En we can take
new orthogonal axes (x′

n,1, ..., x
′
n,n) such that the A′

n,1, ...,A
′
n,n are independent

Laplacian random elements with E(A′
n,j) = 0 for any j.

We have

ρ2n =

n∑
j=1

|A′
n,j |2.

Set

λ2n,j = E|A′
n,j |2, thence E(ρ2n) =

n∑
j=1

λ2n,j ;

we are going to show that the λn,j are bounded.
Let A′

n,k be the A′
n,j which, for fixed n, has the largest λn,j . If |A′

n,k|2 > C2,
a fortiori we have ρ2n > C2. Assuming that λn,k is not bounded when n tends
to +∞,

Pr[A′2
n,k > C2] =

2√
2πλn,k

∫ +∞

C
e
− u2

2λ2
n,k du (C positive)
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=
2√
2π

∫ +∞

C
λn,k

e−
t2

2 dt.

Taking C = λn,k,

Pr[A′2
n,k > λ2n,k] =

2√
2π

∫ +∞

1

e−
t2

2 dt,

a quantity which is not small, so if λn,k is not bounded, there is not a small
probability that ρ2n ≥ C2 (with C2 very large), which is impossible since

ρ2 =
∑
i

|Ai|2 ≥ ρ2n

is almost surely convergent.
So the λn,j are bounded, so the characteristic function of ρ2n

φn(ν) =

n∏
j=1

(1− 2iλ2n,jν)
− 1

2

is regular in a circle (γ) with centre 0 and a fixed non-zero radius, and as a con-
sequence, it is legitimate to use a limited growth of φn(ν) in the neighbourhood
of the origin.

Set

uj = 2iλ2n,jv,

ψn(v) = logφn(v) = −1

2

∑
log(1− uj)

=
1

2

 n∑
1

uj +
1

2

n∑
1

u2
j +

1

3

n∑
1

u3
j + ...

 ,

φn(v) = 1 +
1

2

n∑
j=1

uj +
1

4

n∑
1

u2
j +

1

8

 n∑
j=1

uj

2

+ ...,

φn(v) = 1 + i

n∑
j=1

λ2n,jv −

 n∑
j=1

λ4n,j +
1

2

 n∑
j=1

λ2n,j

2
 v2 + (...)v3.

But, on the other hand, denoting by M1 and M2 the moments of order 1 and 2
of ρ2n, we have

φn(v) = 1 + iM1v −
1

2
M2v

2 + (...)v3

and as a consequence,

M1 =

n∑
j=1

λ2n,j ,

M2 = 2

n∑
j=1

λ4n,j +

 n∑
j=1

λ2n,j

2

,

60



from which we get

σ2(ρ2n) = M2 − M2
1 = 2

n∑
j=1

λ4n,j .

Imagine that the λn,j are all equal to 1, we then have

E[ρ2n] = n, σ2(ρ2n) = 2n.

Bienaymé’s inequality gives, for any β,

Pr[|ρ2n − E(ρ2n)| < βn] ≥ 1− 2n

β2n2

and a fortiori,

Pr[ρ2n > n− βn] > 1− 2n

β2n2
;

1− 2n
β2n2 tends to 1 when n tends to +∞ so, taking β to be smaller than 1, the

probability that ρ2n is large is not small; this result is a fortiori exact if the λn,j
are all at least equal to 1, without being equal between them, and this proves
that the λn,j cannot all be larger than or equal to 1. Let qn be the number of
the λn,j (j = 1, 2, ..., n) which are larger than or equal to 1, and assume that qn
is not bounded when n tends to +∞. In

ρ2n =

n∑
i=1

|A′
n,j |2

let us neglect all the terms for which the corresponding λn,j is smaller than 1,
which is to say that we consider a ρ′2n for which all the λn,j are larger than
or equal to 1; according to above, for any C2, as large as we want it to be, it
suffices that n is large enough for the probability of ρ2n being greater than C2

not to be small, which is impossible since ρ2n is almost surely convergent. So qn
is bounded.

Let us assume that E(ρ2n) =
∑
λ2n,j tends to +∞ when n tends to +∞.

Let β be smaller than 1. Then Bienaymé’s inequality gives

Pr[ρ2n > E(ρ2n)(1− β)] = Pr[|ρ2n − E(ρ2n)| < βE(ρ2n)] ≥ 1−
2
∑n

j=1 λ
4
n,j

β2
(∑n

j=1 λ
2
n,j

)2 .
Let us study the quantity

Qn =
2
∑n

j=1 λ
4
n,j

β2
(∑n

j=1 λ
2
n,j

)2 =
2

β2

∑n
j=1 λ

4
n,j∑n

j=1 λ
2
n,j

1∑n
j=1 λ

2
n,j

.

We showed that when n tends to +∞, the λn,j are bounded and that the
number of λn,j larger than or equal to 1 is finite, so

lim
n→+∞

∑k
ki=k1

λ4n,ki∑n
j=1 λ

2
n,j

→ 0.

For j ̸= ki,
λn,j < 1, so λ4n,j < λ

2
n,j ,
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so ∑
j ̸=ki

λ4n,j∑n
j=1 λ

2
n,j

< 1.

So
lim

n→+∞
Qn = 0,

which proves that the probability that ρ2n > E(ρ2n)(1−β) is not small; now, by
hypothesis„ E(ρ2n) tends to +∞, so the probability that ρ2n is larger than C2 for
any C2 is not small, which is impossible, so E(ρ2n) is bounded.
ρ2 = limn→+∞ ρ

2
n, so, by Fatou’s Lemma, E(ρ2) exists and

E(ρ2) ≤ lim
n→+∞

E(ρ2n).

Theorem 2. – If X with values in a separable Hilbert space is Laplacian,

E(∥X∥2) < +∞.

We used the well-known property that if Pn is a Laplacian random point in
a Euclidean space En with n dimensions, there exists an orthogonal system of
axes in En such that the coordinates of Pn are independent Laplacian variables.
Does this property remain true in the case of a Laplacian random point P in
a separable Hilbert space H ? Put otherwise, does there exist an orthogonal
system {x′

j} in H such that if X is a Laplacian random element with values in
H , X =

∑
j A′

jx
′
j , with A′

j being independent Laplacian random variables?
With the orthogonal system {xj}, let X =

∑
j Ajxj . Then every linear

functional is of the form
x∗(X) =

∑
j

αjAj ,

with the αj being numbers such that
∑

|αj |2 < +∞,

E{[x∗(X)]2} = E

∑
jk

αjαkAjAk

 =
∑
jk

rjkαjαk = Φ

by setting
E(AjAk) = rjk;

Φ is a quadratic Hermitian form.
Let us consider the reduction

Φn =
∑
j,k≤n

rjkαjαk;

Φ− Φn =
∑

j,k,not both ≤n

rjkαjαk =

n∑
j=1

∑
k>n

rjkαjαk

+
∑
i>n

∑
k

rjkαjαk.

Let us assume that
∑

|αj |2 ≤ 1,∣∣∣∣∣∣
∑
j

αjAj

∣∣∣∣∣∣ = |x∗(X)| ≤ ∥x∗∥ · ∥X∥ ≤ ∥X∥,
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n∑
j=1

∑
k>n

rjkαjαk = E

 n∑
j=1

∑
k>n

αjαkAjAk

 .

Now,

n∑
j=1

∑
k>n

αjαkAjAk =

n∑
j=1

αjAj

∑
k>n

αkAk,∣∣∣∣∣∣
n∑

j=1

αjAj

∣∣∣∣∣∣ ≤ 1∥X∥,

∣∣∣∣∣∣
∑
k>n

αkAk

∣∣∣∣∣∣ ≤ εn
∑
k>n

|Ak|2
 1

2

,

where εn is a number bounded by 1.
We likewise have∣∣∣∣∣∣

∑
j>n

∑
k

αjαkAjAk

∣∣∣∣∣∣ ≤ ∥X∥εn

∑
j>n

|Aj |2
 1

2

and since
∑

k|Ak|2 = ∥X∥2 is almost surely convergent,
[∑

k>n|Ak|2
] 1

2

tends to
zero almost surely when n tends to +∞.

As a consequence, Φn tends to Φ uniformly in αj , provided that
∑

|αj |2 ≤ 1,
and it results that [F. Riesz, I, p.113] that Φ is completely continuous and so
[F. Riesz, I, p.146] admits a decomposition of the form

Φ =

∞∑
j=1

sj

 ∞∑
k=1

ljkαk

2

,

the linear forms being normalised and pairwise orthogonal, that is to say, there
exist s1, s2, ..., sj , ... and points x′

1, ..., x
′
j , ..., pairwise orthogonal with ∥x′

j∥ = 1,
such that

Φ =
∑
j

sj [x
∗(x′

j)]
2;

if we take the x′
j as the new axes, we have

Φ =
∑
j

sjα
2
j .

Now,
Φ = E{[x∗(X)]2} =

∑
jk

[αjαkE(A′
jA

′
k)],

so

E(A′
jA

′
k) = 0, if j ̸= k

E(A′2
j ) = sj ,
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that is to say, that A′
j and A′

k (j ̸= k) are non-correlated random variables,
which means, as A′

j are Laplacian random variables, that they are independent,
and that one of them A′

k is independent of A′
j1 , ...,A

′
jn for any n, j1, ..., jn and

k ̸= ji (i = 1, ..., n), so

Theorem 3. – If X is a random element with values in a separable Hilbert
space H , there exists in H an orthogonal system {x′

j} such that

X =
∑
j

x′
jA

′
j ,

with the A′
j being independent Laplacian random variables.

Finally, let us see whether every function of the form

f(x∗) = eiE[x∗(Y)]− 1
2E{[x∗(Y)−E(x∗(Y))]2},

where Y is a random element in H is the characteristic function of a random
element with values in H .

We will assume that Y is such that E(∥Y2) = s2, which implies that E(∥Y∥)
and hence, since H is separable, that E(Y) exists. We can then, without loss
of generality, assume that E(Y) = 0; this then reduces to

f(x∗) = e−
1
2E([x∗(Y)]2).

Let us consider n independent random elements Y1,Y2, ...,Yn with the same
law as Y and let

Zn =
1√
n
(Y1 + Y2 + ...+ Yn).

In H , the square of the norm, ∥Zn∥2, is equal to the scalar product (Zn, Z̄n),
so

E[∥Zn∥2] =
1

n

∑
ij

E[(Yi, Ȳj)];

if i = j,
E[(Yi, Ȳj)] = E[∥Yi∥2] = s2;

if i ̸= j, (Yi, Ȳj) is a linear functional of Yi and E(Yi) = 0, so by Theorem 3 of
Paragraph 1 of this Chapter,

E[(Yi, Ȳj)] = 0

and, as a consequence,

E[∥Zn∥2] =
ns2

n
= s2.

Let φ(x∗) be the characteristic function of Y. Then that of Zn is

Φn(x
∗) =

[
φ

(
x∗
√
n

)]n
=

{
1− 1

2n
E[|x∗(Y)|2] + 1

n
∥x∗∥2ω

(
x∗
√
n

)}n

,

where ω
(

x∗
√
n

)
→ 0 when

∥∥∥ x∗
√
n

∥∥∥→ 0 (Theorem 4, Chapter III). Then

log Φn(x
∗) = −1

2
E[|x∗(Y)|2] + ∥x∗∥2ω

(
x∗
√
n

)
.
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So if ∥x∗∥ < A, for any A > 0, Φn(x
∗) converges uniformly to f(x∗) and, as

a consequence, (Theorem 8, Chapter III), f(x∗) is a characteristic function; it is
thus (Section 1, Chapter IV) the characteristic function of a Laplacian element
X, so

Theorem 4. – Every function

f(x∗) = eiE[x∗(Y)]− 1
2E{[x∗(Y)−E(x∗(Y))]2},

where Y is a random element with values in a separable Hilbert space, such that
E(∥Y∥2) = s2, is the characteristic function of a Laplacian random element.

The proof of the above theorem equally shows us that:

Theorem 5. – If Y1,Y2, ...,Yn are independent random elements with the
same law, with values in a separable Hilbert space, and if

E(∥Yi∥2) = s2,
1√
n
(Y1 + ...+ Yn)

converges in the sense of Bernoulli, when n → +∞, to a Laplacian random
element.
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