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Introduction.

The kernel associated to a Hilbert space was introduced by S. Bergman,
for the space of holomorphic functions on an open subspace of Cn; by himself
and with other authors, he systematically applied it to the study of certain
problems related to holomorphic functions, while he introduced other kernels
relative to other spaces and used them in problems of partial derivatives (see
Bergman [1], Bergman and Schiffer [1]). It was Aronszajn who showed that
this was a particular case of a general situation: one can endow a “reproducing”
kernel on any Hilbert subspace of a space of functions on a set X; he studied
the relationship between the kernel and the space, introducing the operations of
scalar multiplication and addition, and the order structure. Furthermore, he also
showed close links between the kernels and the solution of certain problems in the
limit of partial derivatives (see Aronszajn). Our goal is to extend the formalism
further. If E is any locally convex, quasi-complete Hausdorff topological vector
space, one can define a set Hilb(E) of Hilbert subspaces of E, endowed with a
structure of a “salient convex cone”, defined by the operations indicated above;
one can moreover introduce the space L +(E) of non-negative kernels relative to
E, a non-negative kernel being a linear, weakly continuous, non-negative map
from Ē′ into E; it is also endowed with the structure of a salient convex cone.
And there exists a canonical isomorphism between these two cones.

§0 introduces general background on spaces and conjugate spaces, which
could or should appear in elementary literature on vector spaces, as well as the
notion of the conjugate and the adjoint of a continuous linear map.

§1 introduces the pre-Hilbert and Hilbert subspaces of a topological vector
space, and the important notion of the completion of a pre-Hilbert subspace; the
notion of Q-completion is less necessary to the understanding of the subsequent
material.

§2 introduces the cone Hilb(E) of Hilbert subspaces of E, and formally de-
fines the three fundamental structures: multiplication by a non-negative scalar,
addition and order relation.

§3 introduces kernels relative to E, and some topological vectorial consider-
ations.

§4 defines the non-negative kernel associated to a Hilbert subspace of E,
or the reproducing kernel, or the canonical map from Hilb(E) into L +(E).
Proposition 6 can serve as the definition. Proposition 8 will play a fundamental
role in the subsequent development: it recovers the Hilbert space from its kernel,
and thereby shows that the canonical map Hilb(E)→ L +(E) is injective.

§5 establishes the bijectivity of this map: any non-negative kernel is the
kernel associated to a unique Hilbert subspace (Proposition 10).

§6 establishes the isomorphism between the two cone structures of Hilb(E)
and L +(E): the previously defined bijection preserves the three fundamental
structures.

§7 gives some consequences of this isomorphism. In particular, Proposition
14 establishes the existence and uniqueness of the difference of two Hilbert
subspaces, H1 −H2, if H1 = H2. Propositions 18 and 19 treat infinite sums
of Hilbert subspaces and of kernels, and hence the Hilbert bases of Hilbert
subspaces (Corollary 5 of Proposition 19), and Proposition 20 is concerned with
integrals (measurable sums) of Hilbert subspaces and of kernels.
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§8 studies the effect of a continuous linear map. If E and F are two topolog-
ical vector spaces, and u a continuous linear map from E into F , then u defines
two equivalent maps, one from Hilb(E) to Hilb(F ) and the other from L +(E)
to L +(F ) (Proposition 21). From this, one can deduce the functorial character
of the maps Hilb and L + (page 50).

§9 considers the particular case studied by Bergman and Aronszajn, where
E is a space of complex functions on a set X, equipped with the topology of
pointwise convergence. The propositions shown here often simply reproduce
those of Aronszajn. To see the connections between this particular case and
the general case, one can read page 52. Proposition 27 reconstructs Bergman’s
kernel on a complex analytical manifold.

§10 studies a completely novel situation, drawn from the theory of distri-
butions. The space D , whose dual D ′ is the space of distributions, is at the
same time a subspace of D ′. Thus we study the situation where Ē′ (that is
to say, D) is a subspace of E (that is to say, D ′). In general, we define the
notion of normal subspaces of E, which corresponds to that of spaces of nor-
mal distributions. Thus, if H is a normal Hilbert subspace of E, its conjugate
dual H̄ ′ is again a subspace of E; their kernels H and H ′ are related in a very
interesting way: they are inverses of each other in some sense, and each of the
two subspaces can be reconstructed with the kernel of the other (Propositions
28 to 31). We deduce some applications of this on limit problems of Dirichlet
and von Neumann type (page 73).

§11 studies in detail some applications in classical potential theory: charges
and finite-energy potentials, balayage, restriction to an open subspace and
Green’s operator. The language of Hilbert subspaces and associated kernels
are very fertile here.

§12 attempts a generalisation to Hermitian spaces (with a non-positive met-
ric) and associated Hermitian kernels. Here, we encounter severe difficulties.
It seems that, no matter what method we employ, a Hermitian kernel is no
longer associated to a single Hermitian subspace, but a class of Hermitian
subspaces; the canonical map Herm(E) → L h(E), which extends the map
Hilb(E) → L +(E), is surjective, but is no longer injective. Nevertheless, it
could be that this is not a monstrosity, but an interesting novelty.

§13 gives sufficient conditions, and in some cases necessary and sufficient
conditions (Corollary of Proposition 41), for a Hermitian kernel to come from a
single Hermitian subspace.

The present work was preceded by other publications. It may be of advantage
to read those first∗.

Furthermore, in the future, we will publish works on applications in differ-
ential operators (see Proposition 34, for example) and unitary representations
of Lie groups and distributions of positive-type on these groups.

∗See Schwartz [4] and [5].
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§0. Spaces and conjugate spaces

Conjugate spaces. Let E be a locally convex Hausdorff topological vector
space(1) over C. The conjugate space of E consists of a locally convex Hausdorff
topological vector space Ē and an anti-isomorphism from E onto Ē, which we
generally call “conjugation” and denote by e 7→ ē. Naturally, E is the conjugate
space of Ē, corresponding to the reciprocal anti-isomorphism ē 7→ e. There
exists only one conjugate space, up to isomorphism. In other words, if Ē1 and
Ē2 are two conjugate spaces of E, corresponding to anti-isomorphisms e 7→ ē1

and e 7→ ē2, there exists a unique isomorphism i from Ē1 onto Ē2, satisfying
iē1 = ē2 for all e in E. In practice, we encounter many models of conjugate
spaces:

Examples.

1◦) Let us place on E the original structure of an additive group, and a
“hacked” multiplication law by complex scalars, denoted e 7→ λ × e, such
that

(0.1) λ× e = λ̄e.

Equipped with these laws, and with the original topology, E becomes a
new topological vector space over C, denoted Ē. Here, Ē is a conjugate
space of E, if we take the identity e 7→ e for the conjugation. Every space
E possesses a conjugate space, and only one up to isomorphism.

2◦) Often, a topological vector space E is equipped with an anti-automorphism
e 7→ ē. We can then take Ē = E, the conjugation being the given anti-
automorphism. For the conjugate space of Ē, we can take either E with
conjugation ē 7→ e or E with conjugation ē 7→ ¯̄e: the canonical isomor-
phism i between these two conjugate spaces, defined at the beginning,
is thus e 7→ ¯̄e. Usually, the given anti-automorphism will be an anti-
involution, i.e. we have ¯̄e = e, so that this technicality is not an issue.
For example, if f is a complex function on a set X, we define f̄ by f̄(x) =
f(x), and many function spaces in analysis admit the anti-involution f 7→
f̄ , and are thus conjugate spaces of themselves. The same holds true for
current spaces and distribution spaces(2).

3◦) Let Ē be a conjugate space of E. Let E′ be its dual (space of continuous
linear forms on E); we will denote by 〈e, e′〉 the scalar product of e ∈ E
and e′ ∈ E′. For e′ ∈ E′, ē 7→ 〈e′, e〉 is a continuous linear form on Ē,
thus defining an element e′ in Ē′. So e′ 7→ e′ is an antilinear bijection
from E′ onto Ē′; it is a homeomorphism, so an anti-isomorphism, if we
equip E′ and Ē′ with corresponding topologies (weak, strong, etc... If S
is a family of subsets of E and S̄ the corresponding family of conjugated
subsets in Ē, we could take the S-convergence and S̄-convergence on E′
and Ē′ respectively(3)). We can thus take Ē′ as the conjugate space E′ of

(1)For most of the definitions concerning topological vector spaces, we will refer to Bourbaki
[1]. A topological vector space is locally convex if the origin has a neighbourhood basis
consisting of convex sets. A map u is antilinear if u(x+ y) = u(x) +u(y) and if, for all scalars
λ, we have u(λx) = λ̄u(x). An anti-isomorphism is an antilinear homeomorphism.

(2)For distributions, we refer to Schwartz [1], and for currents, to de Rham [1].
(3)See Bourbaki [1], Chapter III, §3, no1.

3



E′ with the conjugation e′ 7→ e′; so we have the rule Ē′ = E′ and

(0.2) 〈e′, ē〉 = 〈e′, e〉.

Taking into account the definitions of the transpose(4) and the contragre-
dient of an antilinear map, e′ 7→ e′ is the contragredient of e 7→ ē according
to (0.2).
For example, in 1◦), Ē′ is nothing else but the anti-dual of E (the space of
continuous antilinear forms on E). In 2◦), Ē′ is nothing else but E′, and
e′ 7→ ē′ is an anti-involution on E′, contragredient of the anti-involution
of E. Hence, from the anti-involution φ 7→ φ̄ on the space D(X) of com-
pactly supported C∞ functions on an open subset X of Rn (or compactly
supported C∞ differential forms on a manifold X of C∞-class), we de-
duce the anti-involution T 7→ T̄ on the space D ′(X) of distributions (or
currents) on X, by

(0.3) 〈T̄ , φ̄〉 = 〈T, φ〉;

this involution makes D ′(X) the conjugate space of itself.
It would sometimes be advantageous to introduce sesquilinear scalar prod-
ucts(5) on E × Ē′, E′ × Ē, Ē × E′ and Ē′ × E:

(0.4)

{
(e | ē′) = (e′ | ē) = 〈e, e′〉(= 〈e′, e〉)
(ē | e′) = (ē′ | e) = 〈e, e′〉.

4◦) Let H be a Hilbert space; we will denote by (e | f)H its sesquilinear inner
product. For its conjugate H̄ , we can take its dual H ′, the conjugation
being the canonical anti-isomorphism from H onto H ′; if h ∈H , h̄ will
then be the element of H ′ = H̄ defined by

(0.4b) 〈k, h̄〉 = (k | h)H , ∀k ∈H .

This will lead us, in this case, to take for H̄ ′ the space H itself, following
3◦) and (0.2), by identifying the element h of H with the element of
H̄ ′, represented by the continuous linear form on H̄ : k̄ 7→ (h | k)H ; we
immediately obtain (0.2), with h ∈ H̄ ′ = H and k̄ ∈ H̄ = H ′:

(0.4c) 〈h, k̄〉 = (h | k)H , which is (0.4b) with h and k reversed.

The scalar product (0.4) of h ∈H and k ∈ H̄ ′ = H is nothing but their
scalar product (h | k)H in H . The system of the 4 spaces H ,H ′, H̄ , H̄ ′

thus reduces to 2, H = H̄ ′ and H̄ = H ′.
If, moreover, we have an anti-involution on H , the four spaces become
canonically isomorphic. The isomorphism between H and H ′ is the fol-
lowing: we associate to h ∈H the element of H ′ defining the continuous
linear form on H : k 7→ (k | h̄).

(4)The transpose of a continuous linear map u from E into F is a linear map tu from F ′ into
E′ defined by 〈u(x), y′〉 = 〈x, tu(y′)〉 for x ∈ E and y′ ∈ E′; the transpose of an antilinear
map u is an antilinear map tu defined by 〈u(x), y′〉 = 〈x, tu(y′)〉. The contragredient is always
the inverse of the transpose.

(5)A sesquilinear form B on E × E is a complex-valued function such that the partial map
e 7→ B(e, f) is linear and the partial map f 7→ B(e, f) is antilinear.
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However, im analysis, it will in general be impossible to make these iden-
tifications: H will quite generally possess a natural anti-involution, al-
lowing the identification of H and H̄ , and hence also H ′ and H̄ ′, but
the pairs H , H̄ and H̄ ′,H ′ will have to be distinguished despite being
isomorphic∗. Thus, in Example 2 on page 8, we will have H̄ s = H s by
the natural anti-involution of complex conjugation f 7→ f̄ , but (H s)′ =
(H̄ s)′ = H −s 6= H s.

Henceforth, we will speak of the conjugate space Ē of E without specifying which
model was chosen. We will, however, always assume the identification of Ē′ and
E′ following 3◦) and (0.2).

Conjugate of a linear or antilinear map.

Let u be a continuous linear or antilinear map from E into F . Then ū is a map
of the same nature, from Ē into F̄ , defined by

(0.5) ūē = ue, ∀e ∈ E.

If, in particular, u = e′ ∈ E′, corresponding to F = C, ū is the element e′ of E′
defined by (0.2), given that we take C itself for C, and the usual conjugation
z 7→ z̄.

The map u 7→ ū is an anti-isomorphism from L (E;F ) (the space of contin-
uous linear maps from E into F ) onto L (Ē; F̄ ), so that we can consider the
latter as the conjugate space of the former. We now have, for e ∈ E and f ′ ∈ F ′,
the formula

〈tuf̄ ′, ē〉 = 〈tuf ′, ē〉

= 〈tuf ′, e〉 = 〈f ′, ue〉(0.6)

= 〈f̄ ′, ue〉 = 〈f̄ ′, ūē〉 = 〈tūf̄ ′, ē〉

so that

(0.7) tu = tū ∈ L (F̄ ′; Ē′).

This operator tu = tū will also be denoted u∗ and called the adjoint of u.
According to (0.6), we have

(0.7b) 〈u∗f̄ ′, ē〉 = 〈f ′, ue〉 or 〈f̄ ′, ue〉

or, with (0.4):

(0.7c) (u∗f̄ ′ | e) = (f̄ ′ | ue).

The reason for the use of letters such as f̄ ′, e, ... is that they immediately indicate
the space in which we work. But they sometimes have the drawback of drowning
everything in the signs and indices. We may sometimes choose to represent
(0.7b) and (0.7c) under the form

(0.7d)
〈u∗φ, ψ̄〉 = 〈φ, uψ〉
(u∗φ | ψ) = (φ | uψ)

}
φ ∈ F̄ ′, ψ ∈ E.

∗“Dangerous corner”. See N.Bourbaki, Élements de Mathémathiques, Fascicule I, Paris
1939. Page VI.
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If E and F are Hilbert spaces and if we identify them with Ē′ and F̄ ′ by 4◦),
u∗ becomes a continuous linear map from F to E, which is indeed the usual
adjoint.

[It is the same if u is antilinear, except that the above equalities in (0.6) are
to be replaced by

...〈tuf ′, e〉 = 〈f ′, ue〉 = 〈f̄ ′, ue〉

= 〈f̄ ′, ūē〉 = 〈tūf̄ ′, ē〉.
(0.8)

What replaces (0.7b) here is

(0.9) 〈u∗f̄ ′, ē〉 = 〈f ′ = ue〉,

while (0.7c) is replaced by

(0.10) (u∗f̄ ′ | e) = (ue | f̄ ′).]

Finally, if E, F and G are three spaces, and if u maps E into F and v maps
F into G, we have v ◦ u = v̄ ◦ ū. If u is invertible, ū is also invertible and
ū−1 = u−1.

All these formulae are quite easy and quite mechanical. We have the follow-
ing general rules:

1. To take the conjugate of an expression, we conjugate everything that is in
the expression (examples: Equations (0.2) or (0.5)).

2. Above each letter, the parity of the number of bars is the same on either
side of an = sign; provided that we consider ∗ as equivalent to a bar
(u∗ = tu), that a letter placed after the vertical line in a scalar product (|)
contains a bar ((α | β) = 〈α, β̄〉) and that, if u is antilinear, ue contains a
bar on e. This rule can easily be verified in (0.6) and (0.8).

§1. Hilbert subspaces of a topological vector space

Henceforth, E will always be a locally convex Hausdorff topological vector space
over the field of complex numbers C. A Hilbert (resp. pre-Hilbert) subspace
H of E consists of a vector subspace H of E and a Hilbert (resp. pre-Hilbert)
structure on H [this means, let us recall, a Hermitian form (x, y) 7→ (x | y)H

that is linear in x and antilinear in y, which is required to be positive in the
pre-Hilbert case, and in the Hilbert case, to be positive definite and such that
H is complete with respect to the norm x 7→ ‖x‖H = (x | x)1/2], for which the
natural inclusion of H into E is continuous. This latter condition is equivalent
to saying that, on H , the topology defined by the norm is finer than the topology
induced by E; and for that, it is necessary and sufficient that the unit ball of H
is bounded in E. It should be noted that, following this definition, two distinct
Hilbert structures on the same vector subspace of E are considered to define
two distinct Hilbert subspaces of E.

Having given the definitions of Hilbert and pre-Hilbert subspaces without
other hypotheses on E, we will henceforth always assume, without explicit men-
tion, that E is quasi-complete(6) with respect to its initial topology. We will very

(6)A topological vector space is quasi-complete if all its closed bounded subsets are complete.
For a metrisable space, quasi-completeness is equivalent to completeness.
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frequently consider its weak topology σ(E,E′); naturally it is not necessarily
quasi-complete with respect to this latter topology (except and only except if
it is semi-reflexive(7)). On the contrary, it is quasi-complete with respect to the
topology τ(E,E′) of Mackey, because it is finer than the initial topology, and
has a neighbourhood basis of the origin (the polar sets of the balanced convex
weakly compact subsets of E′) that is closed with respect to the initial topol-
ogy(8). It is easy to convince ourselves that the initial topology plays no role in
the subsequent developments, and that we can simply consider a couple of dual
spaces, E and E′, such that E is τ -quasi-complete. We chose not to introduce
this topology τ , which is often not well-known.

Proposition 0. Let H be a vector subspace of E, equipped with a pre-Hilbert
structure. If it is a pre-Hilbert subspace of E when we equip E with a coarser
topology than the initial topology, but having the same bounded subsets (for ex-
ample the weak topology σ(E,E′)(9)), it is a pre-Hilbert subspace of E with
respect to the initial topology. Let E′∗ be the algebraic dual of E′ (that is to say,
the space of all linear forms on E′; so we have E ⊂ E′∗); let us equip it with the
weak topology σ(E′∗, E′) (it is then a weakly complete subset of E). If H is a
Hilbert subspace of E′∗, H ∩E (equipped with the pre-Hilbert structure induced
by H ) is a Hilbert subspace of E: if H possesses a dense subspace contained
in E, or a Hilbert basis contained in E, then H is a Hilbert subspace of E.

Proof. The first claim is obvious, since H is a pre-Hilbert subspace of E if and
only if the unit ball of H is bounded in E: this does not depend on the topology
of E, but only on its bounded subsets.

Let H be a Hilbert subspace of E′∗. Then, let hn, n = 1, 2, ... be a Cauchy
sequence in H contained in E; it converges to an element in H with respect to
the topology of H ; but it is a Cauchy sequence in E, because H ∩ E, a weak
pre-Hilbert subspace of E, is also a pre-Hilbert subspace of E with respect to
its initial topology; so, since E is assumed to be quasi-complete with respect to
its initial topology, the sequence also converges to an element in E with respect
to the topology of E. Its limits in H and in E coincide, because they are its
limit in E′∗. This indeed proves that H ∩E is complete, and hence that it is a
Hilbert subspace of E. If H0 is a subspace of H contained in E, its closure in
H is then in H ∩E; so if H0 is dense in H , H is in E. This is what we will
obtain if H has a Hilbert basis in E, because the subspace which it generates
is dense in H and contained in E.

Example 1. On a finite-dimensional vector subspace of E, every positive def-
inite Hermitian form defines a Hilbert structure whose topology is identical to

(7)For the weak topology σ(E,E′), see Bourbaki [1]. Chapter IV, §2, no 1. As every bounded
subset of E is always weakly pre-compact, saying that a weakly closed and bounded subset
is weakly complete is equivalent to saying that it is weakly compact; and this is precisely the
condition of semi-reflexivity of Mackey (Bourbaki [1], Chapter IV, §3, no3, Theorem 1).

(8)For the topology τ of Mackey, see Bourbaki [1], Chapter IV, §2, no3, Theorem 2 and
Corollary. From this definition, it is immediate that the initial topology of E is coarser than
τ(E,E′). The fact that any space E which is quasi-complete with respect to its initial topology
is also quasi-complete with respect to τ(E,E′) then results from Bourbaki [1], Chapter I, §1,
no5, Proposition 8.

(9)Every weakly bounded subset is also bounded with respect to the initial topology
(Mackey’s Theorem, see Bourbaki [1], Chapter IV, §2, no4, Theorem 3).
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the topology induced by E, since they are both Hausdorff(10), so it defines a
Hilbert subspace of E. For certain infinite-dimensional spaces E “monstrous”
enough, all Hilbert subspaces are finite-dimensional.

For example, let E be an infinite-dimensional vector space, equipped with
the finest locally convex topology(11). In this topology, every vector subspace is
closed. If H is then a Hilbert subspace of E, all its vector subspaces are closed
in E and thus in H , so H is finite-dimensional.

Example 2. If E is the space D ′ of complex distributions on Rn, H = L2

is a Hilbert subspace of E. Usually, we also write H 0 = L2, and define the
space H s, with s = 0 a natural number(12), as the space of functions (more
precisely: classes of functions, up to Lebesgue equivalence) belonging to L2,
whose derivatives of order 5 s, in the sense of distributions, are also functions
in L2 (usually, one writes Hs, but here we write H s). For every derivative
index p = (p1, p2, ..., pn) of order |p| = p1 + p2 + ... + pn 5 s, one chooses a
number ap > 0; then we can equip H s with a scalar product

(1.1) (f | g)H s =
∑
|p|5s

∫
Rn

apD
pfDpḡdx,

which is indeed a Hilbert subspace of D ′.
As a topological vector space, it is independent of the choice of ap, but not

as a Hilbert space.
We define H −s as the dual of H s; equipped with its natural inclusion into

D ′ obtained as the transpose of the natural dense inclusion of D into H s, and
with a norm as the dual of H s, it is again a Hilbert subspace of D ′ (its Hilbert
structure depends on the choice of ap).

More generally, we define H s for some real s by Fourier transformation, but
we do not make use of it here. If now X is an open subset of Rd, H s(X), for
a natural number s = 0, is a subspace of D ′(X) (space of distributions on X)
consisting of functions in L2(X) whose derivatives of order 5 s, in the sense of
distributions, are in L2(X); we equip it with the scalar product in (1.1), where∫
Rn is replaced by

∫
X
, which depends on ap and in fact is a Hilbert subspace of

D ′(X). D(X) is not dense in H s(X) for s = 1; let H s
0 be the closure of D(X)

in H s(X). Then we define H −s(X) as the dual of H s
0 (X), equipped with the

natural inclusion in D ′(X) obtained by transposing the dense inclusion of D(X)
into H s

0 (X); it is again a Hilbert subspace of D ′(X).

Example 3. Let X be an oriented Riemann space of dimension n, of C∞-class.
Then there exists an operation ∗, which gives a correspondence between every
differential form ω of degree p and a differential form ∗ω or ω∗ of degree n− p;
the operation ∗ is antilinear. Let H be the space of classes of measurable
(10)On a finite-dimensional vector space, there is only one possible Hausdorff vector space
topology; see Bourbaki [1], Chapter I, §2, no3, Theorem 2.
(11)On every vector space, there exists a locally convex topology which is finer than all
other topologies, defined, for example, by the family of all semi-norms. Every semi-norm is
continuous, hence so are all the linear forms, which means all the hyperplanes are closed,
hence so are all vector subspaces, which are all intersections of hyperplanes.
(12)The spaces H s are commonly used in the theory of partial differential equations. One
can find a very complete study of it in, for example, Hörmander [1], Chapter II, Definition
2.4.1, with the notation H(s).
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differential forms, such that the positive form ω ∧ ω∗ of degree n is integrable;
we can equip H with the scalar product:

(1.2) (α | β)H =

∫
X

α ∧ β∗.

H is a Hilbert subspace of the space D ′(X) of currents on X; it is used in
the theory of harmonic forms(13). If X is compact, H , as a topological vector
space, does not depend on the Riemannian structure of X, that is to say, on the
operation ∗ (H is the space of classes of measurable forms with L2 coefficients
on every compact subset of every chart of X); but its Hilbert structure does
depend on it. If X is an open subset of Rn, the subspace H̊ of H of degree-0
forms is nothing but L2(X), with its usual norm.

Example 4. LetX be a locally compact topological space, and µ a non-negative
Radon measure on X. For every f • ∈ L2(X,µ) (f • is a class of functions, not
one function), we can define the Radon measure fµ, where f is some function in
the class f •. We will denote by Λ2(X,µ) the space of these measures, equipped
with the scalar product

(fµ | gµ)Λ2(X,µ) = (f • | g•)L2(X,µ)(1.2b)

=

∫
X

fḡdµ.

Λ2(X,µ) is a pre-Hilbert space; but as f • → fµ is an isometry from L2 onto
Λ2, it is Hilbert like L2 itself. It is contained in the space D ′0(X) of Radon
measures on X. In addition, if fµ converges weakly to 0 in Λ2 (and a fortiori if
it converges strongly), it converges weakly to 0 in D ′0 because, for φ ∈ D0(X),

(1.2c) 〈fµ, φ〉 = (fµ | φ̄µ)Λ2 .

So Λ2(X,µ) is a Hilbert subspace of D ′0(X) with the weak topology, and also
a Hilbert subspace of D ′0(X) with the strong topology, which has the same
bounded subsets since D0(X) is complete(14).

Let us remark that Λ2(X,µ) is equipped with a natural anti-involution, the
complex conjugation, induced by that of D ′0(X) : fµ 7→ fµ = f̄µ. One can
therefore, following 4◦) on page 4, identify the four spaces Λ2, Λ̄2, (Λ2)′, (Λ2)′;
the element fµ of Λ2 is, for example, identified with the element of (Λ2)′ defining
the continuous linear form on Λ2: gµ 7→

∫
X
fgdµ. Equation (1.2c) can also be

replaced by

(1.4d) 〈fµ, φ〉D′0,D0 = 〈fµ, φµ〉Λ2,(Λ2)′ .

If X is an open subset of Rn, and if µ is the Lebesgue measure dx, the function
f , its class f • and the measure or the distribution fdx are identified; then
L2(X, dx) and Λ2(X, dx) are identified, as well as their duals and conjugate
spaces.
(13)See de Rham [1], Chapter V, §24 and 25.
(14)D0 is the space of continuous functions with compact support, equipped with the usual
topology of direct limits (Schwartz [1], Chapter III, §1). It is complete (loc. cit. Chapter
III, Theorem 1) so the weakly bounded subsets of its dual D ′0 are also strongly bounded
(Bourbaki [1], Chapter IV, §3, no2, Proposition 1).
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Completion of a pre-Hilbert subspace of E

Let H0 be a pre-Hilbert subspace of E. The completion of H0 in E is any
Hilbert subspace H of E, such that the pre-Hilbert structure of H0 is induced
by H , and in which H0 is dense.

Proposition 1. Let H0 a pre-Hilbert subspace of E, and j its natural inclusion
into E; let Ĥ0 be the completion of H0

(15), and ̂ the continuous linear map from
Ĥ0 into E extending j. For H0 to have a completion H in E, it is necessary
and sufficient for ̂ to be injective; or equivalently, it is necessary and sufficient
for the unit ball B0 of H0 to be closed in H0 with respect to the topology induced
by E. In this case, H is unique; it is the image of Ĥ0 under ̂, equipped with
the Hilbert structure transported from Ĥ0 under ̂.

Proof. The complete space Ĥ0 is in general not a subspace of E. But j, being
continuous and linear, extends uniquely to a continuous linear map ̂ from Ĥ0

into Ê; in fact, as H0 is normed, its completion Ĥ0 coincides with its quasi-
completion “H0, so ̂ sends Ĥ0 into the quasi-completion Ê, which is E, since E
is assumed to be quasi-complete. We have a commutative diagram:

(1.3)
H0 E

Ĥ0

j

⊂
̂

where H0 → Ĥ0 is the inclusion of H0 in its completion. The fact that j is
injective in no way, in general, implies that ̂ is injective.

1◦) Let us first suppose that there exists a completion H of H0 in E. Since H
is complete, and H0 is dense in H , there exists a canonical isomorphism
of Ĥ0 onto H and we have the following commutative diagram:

(1.4)
H0 H E

Ĥ0

⊂

j

⊂

̂

Then ̂ is indeed injective, and H is indeed unique, since it is the image
of ̂(Ĥ0), and its structure is transported by ̂ from that of Ĥ0. The unit
ball B0 of H0 is the intersection B∩H0 of the unit ball B of H with H0;
B is weakly compact in H , so weakly compact in E, and so closed in E;
hence, B0 is indeed closed in H0 with respect to the topology induced by
E.

2◦) Let us now suppose that ̂ is injective. Then, if we denote the image ̂(Ĥ0)
by H , equipped with the Hilbert structure carried over by ̂ from that of

(15)It is perhaps ambiguous to say “the” completion. There are several possible definitions
of it; all completions are canonically isomorphic in every way. Ĥ0 thus denotes any Hilbert
space in which H0 is a dense vector space, with the induced pre-Hilbert structure.

10



Ĥ0, then H is Hilbert and the inclusion H → E is continuous since ̂ is
continuous, so H is a Hilbert subspace of E; as H0 is dense in Ĥ0, it is
dense in H , and H is the completion of H0 in E.

3◦) Lastly, let us suppose that the unit ball B0 of H0 is closed in H0 with
respect to the topology induced by E. Let h be an element of Ĥ0 such
that ̂(h) = 0. There exists a sequence of elements hn of H0 which, as
n → ∞, converges to h in Ĥ0; j(hn) = hn, so hn converge to ̂(h) = 0
in E. Let ε > 0; there exists N such that, for m = N and n = N ,
‖hm − hn‖H0

5 ε; as n → ∞, hm − hn converge to hm in E, and as the
ball of radius ε of H0 is closed with respect to the topology induced by
E, we have ‖hm‖H0

5 ε for m = N . This proves that hm converges to 0
in H0 as m→∞, so h = 0, and ̂ is injective; we have arrived at 2◦), and
Proposition 1 is shown.

Counterexample. Let E = L2(R), and let H0 be a subspace of continuous
functions of L2, equipped with the scalar product

(1.5) (f | g)H0
=

∫
R
f(x)g(x)dx+ f(0)g(0).

H0 is a pre-Hilbert subspace of E.
We can identify Ĥ0 with the product L2 × C, equipped with the scalar

product

(1.6) ((f, α) | (g, β))Ĥ0
=

∫
R
f(x)g(x)dx+ αβ̄,

with the inclusion from H0 into Ĥ0 defined by f 7→ (f, f(0)).
Then the map ̂ from Ĥ0 into E is defined by (f, α) 7→ f , the only continuous

linear map from Ĥ0 into E which, composed with the inclusion of H0 in Ĥ0,
gives the inclusion of H0 in E: f 7→ (f, f(0)) 7→ f . Then ̂ is not injective;
its kernel is {0} × C. It can be seen here that B0 is not closed in H0 with
respect to the topology induced by E. This is because the closure B̄0 of B0 in
E is the unit ball of L2 (any f ∈ L2, of norm at most 1, is the limit in L2 of a
sequence fn ∈ L2 of continuous functions satisfying ‖fn‖L2 5 1 and fn(0) = 0,
so belonging to B0); then B0 ∩H0 is strictly larger than B0, and contains, for
example, all continuous functions f ∈ L2 satisfying ‖f‖L2 5 1 and |f(0)| > 1,
which do not belong to B0.

Q-completion in E of a pre-Hilbert subspace H0 of E

Let us suppose that the conditions stated in Proposition 1 do not hold. Then
̂ is not injective; let N = (̂)−1({0}) be its kernel; we certainly have N ∩H0 =

{0}. Ĥ0/N is a Hilbert space, and ̂ factorises into Ĥ0
π→ Ĥ0/N

̂•→ E,
where π is the canonical map from Ĥ0 onto the quotient Ĥ0/N , and where
̂• is injective. We can then transport the Hilbert structure of Ĥ0/N onto
H = ̂(Ĥ0) via ̂•; H is a Hilbert subspace of E, in which H0 is dense. But it
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induces a weaker norm on H0 than that of H0, namely that of Ĥ0/N ; we will
say that H is the Q-completion of H0 in E, Q standing for quotient. In the
preceding example, the Q-completion of H0 in L2 is L2. We can characterise
H as follows:

Proposition 1b. The Q-completion H of H0 in E is the smallest Hilbert
subspace of E containing H0, and its norm is the largest Hilbert subspace norm
of E which induces a weaker norm on H0 than that of H0 (that is to say, such
that the inclusion of H0 in H is of norm 5 1).

Proof. Let K be a Hilbert subspace of E containing H0. Then the inclusion j of
H0 in E factorises into H0 → K → E, composed of continuous inclusions. By
continuous extensions, ̂ factorises into Ĥ0 → K → E, so ̂(Ĥ0) = H ⊂ K ;
H is thus the smallest Hilbert subspace of E containing H0. If, moreover,
H0 → K has norm 5 1, then Ĥ0 → K has norm 5 1, so, by passing to
quotients, Ĥ0/N → K has norm 5 1, hence so does H → K ; the norm
induced by K on H is smaller than that of H .

§2. The set Hilb(E) of Hilbert subspaces of E

We shall denote by Hilb(E) the set of Hilbert subspaces of E. It possesses a
remarkable structure.

1◦) There exists a multiplication law of elements of Hilb(E) by non-negative
real numbers.
Let H be a Hilbert subspace of E, λ a non-negative real number. We
denote by λH the space {0} if λ = 0, and if λ > 0, the space H the space
H equipped with a new scalar product, obtained by multiplying the old
scalar product by 1

λ (the following relations will show the necessity of this
choice):

(2.1) (h | k)λH =
1

λ
(h | k)H .

We thus have

(2.2) ‖h‖λH =
1√
λ
‖h‖H .

We obviously have associativity

(2.3) (λµ)H = λ(µH ), λ = 0, µ = 0.

2◦) There exists an addition law on Hilb(E).
Let H1 and H2 be two Hilbert subspaces of E; we will define a Hilbert
subspace H1+H2 (beware that we do not necessarily have H1∩H2 = {0}).
Firstly, let us consider the Hilbert sum H1⊕H2; it is the product H1×H2

equipped with the scalar product

(2.4)
(
(h1, h2) | (k1, k2)

)
H1⊕H2

=
(
h1 | k1

)
H1

+
(
h2 | k2

)
H2

.

Then we also have

(2.5) ‖h1, h2‖2H1⊕H2
= ‖h1‖2H1

+ ‖h2‖2H2
.
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Of course, this is not a subspace of E. But there exists a natural map Φ
from H1 ⊕H2 into E, defined by

(2.6) Φ(h1, h2) = h1 + h2.

Φ is linear and continuous. Its kernel N is the set of pairs (h1, h2) such
that h1 + h2 = 0, and its image is the sum H1 + H2. The kernel N is
closed since Φ is continuous, so (H1 ⊕H2)/N is again a Hilbert space,
and we have a commutative diagram:

(2.7)
H1 ⊕H2 E

(H1 ⊕H2)/N

Φ

π Φ•

where π is the canonical map from H1 ⊕ H2 onto the quotient (H1 ⊕
H2)/N , and where Φ• is continuous, linear and injective. If K is orthog-
onal to N in H1 ⊕H2, π is an isomorphism (with respect to the Hilbert
structure) from K onto (H1 ⊕H2)/N .

The image of Φ, equipped with the Hilbert structure carried over by Φ•

from that of (H1 ⊕H2)/N , will then be called the sum space, and will
be denoted by H1 + H2. H1 + H2 is a Hilbert space, and its inclusion
in E is continuous since Φ• is continuous; it is thus a Hilbert subspace of
E. Moreover, Φ is an isomorphism (with respect to the Hilbert structure)
from K onto H1 + H2.

For an element h• of (H1 ⊕H2)/N , the quotient norm is defined by

‖h•‖2(H1⊕H2)/N = inf
π(h1,h2)=h•

∥∥(h1, h2)
∥∥2

H1⊕H2

= inf
π(h1,h2)=h•

(
‖h1‖2H1

+ ‖h2‖2H2

)
.

(2.8)

From this, we deduce the following formula for an element h of H1 + H2:

(2.9) ‖h‖2H1+H2
= inf
h1+h2=h

(
‖h1‖2H1

+ ‖h2‖2H2

)
.

Let us note that, in (2.8) and (2.9), the infimum is in fact a minimum,
and we have exactly

(2.10) ‖h‖2H1+H2
= ‖h1‖2H1

+ ‖h2‖2H2
,

for the unique element (h1, h2) of H1 ⊕H2 belonging to the orthogonal
K of the kernel N and such that h1 + h2 = h.

Moreover, for h and k in H1 + H2, we have

(2.11) (h | k)H1+H2
= (h1 | k1)H1

+ (h2 | k2)H2
,

with h1 + h2 = h, k1 + k2 = k, provided that at least one of the elements
(h1, h2), (k1, k2) of H1 ⊕H2 is orthogonal to N .

We can thus define H1 +H2 without going via H1⊕H2 and Φ, by simply
saying that, as a vector space, it is the sum of subspaces H1 and H2 of
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E, and that its norm is given by (2.9); but it is the method above that
shows that this norm is Hilbert (because a quotient (H1 ⊕H2)/N of a
Hilbert space by a closed subspace is again a Hilbert space).
If H1∩H2 = {0}, N is reduced to {0}; for h ∈H1 +H2, there is a unique
pair (h1, h2) of H1⊕H2 such that h1+h2 = h, and Φ is an isomorphism of
H1⊕H2 onto H1 +H2. H1 and H2 are two closed orthogonal subspaces
and their Hilbert structures are induced by that of H1 + H2.
We have the formulae

(2.11b)

{
λ (H1 + H2) = λH1 + λH2, λ = 0,

(λ+ µ) H = λH + µH , λ, µ = 0.

The first formula is trivial; let us show the second, which is less so. The
two sides coincide as vector spaces, so it remains to show that their norms
coincide. Let us consider the case where λ > 0 and µ > 0, since otherwise
the result is trivial.
Let h ∈H . Let us find its norm in λH +µH . Let h1, h2 be two elements
in H such that h1 + h2 = h; under what condition is (h1, h2) in K , the
space orthogonal to N in λH ⊕ µH ? We must have

(2.11c) (h1 | k1)λH + (h2 | k2)µH = 0, or

(2.12)
1

λ
(h1 | k1)H +

1

µ
(h2 | k2)H = 0,

for every pair (k1, k2) in H ×H such that k1 +k2 = 0. This is equivalent
to

(2.13)
(
h1

λ
− h2

µ
| k1

)
H

= 0

for every k1 in H , which in turn is equivalent to h1

λ −
h2

µ = 0.
The two equations

(2.14)

{
h1 + h2 = h
h1

λ −
h2

µ = 0

give

(2.15) h1 =
λ

λ+ µ
h, h2 =

µ

λ+ µ
h.

Then

‖h‖2λH +µH = ‖h1‖2λH + ‖h2‖2µH

=
λ2

(λ+ µ)2
‖h‖2λH +

µ2

(λ+ µ)2
‖h‖2µH

=
λ

(λ+ µ)2
‖h‖2H +

µ

(λ+ µ)2
‖h‖2H

=
1

λ+ µ
‖h‖2H

= ‖h‖2(λ+µ)H ,

(2.16)

14



which shows the second formula in (2.11b).

The addition law in Hilb(E) is trivially commutative, and has the Hilbert
subspace {0} as its identity element. Moreover, it is associative:

(2.17) (H1 + H2) + H3 = H1 + (H2 + H3).

Each side can be written as H1 + H2 + H3, and can be defined directly
as the sum subspace, equipped with the norm

(2.18) ‖h‖2H1+H2+H3
= inf
h1+h2+h3=h

(
‖h1‖2H1

+ ‖h2‖2H2
+ ‖h3‖2H3

)
,

where the proof of the Hilbert subspace property of H1 + H2 + H3 uses
the natural map Φ from H1⊕H2⊕H3 into E, defined by Φ(h1, h2, h3) =
h1 + h2 + h3.

3◦) There exists an order relation in Hilb(E).

Let H1,H2 be two Hilbert subspaces of E. We will write H1 5 H2, if
H1 ⊂ H2 and if the inclusion of H1 in H2 is continuous with norm 5 1,
which translates to

(2.19) ‖h‖H1
= ‖h‖H2

for h ∈H1.

This is also equivalent to saying that the open (resp. closed) unit ball of
H1 is contained in the open (resp. closed) unit ball of H2.

For example, if we return to Example 2 on p.8, we have H s(X) =H t(X)
for s 5 t, if the collection of ap, |p| 5 s extends to the collection of ap,
|p| 5 t.
It is worth noting that the inequality 5 translates to the inclusion ⊂,
but to the inverse relation = between the norms. It is certainly an order
relation because, if H1 5 H2 and H2 5 H1, the two vector spaces are
the same with the same norm, hence the same scalar product, according
to the well-known relation

(2.19b) 4(h | k)H = ‖h+ k‖2H −‖h− k‖
2
H +i ‖h+ ik‖2H −i ‖h− ik‖

2
H .

For H 6= {0}, we trivially have

(2.20) λH 5H ⇐⇒ λ 5 1.

Moreover, H1+H2 =H1 and =H2. Indeed, on the one hand, H1+H2 ⊃
H1, and on the other hand, for h ∈H1, we have

‖h‖2H1
=
∥∥(h, 0)

∥∥2

H1⊕H2

= inf
h1+h2=h

∥∥(h1, h2)
∥∥2

H1⊕H2
= ‖h‖2H1+H2

.
(2.21)

Proposition 2. Let H1,H2 be two Hilbert subspaces of E. For H1 ⊂ H2 to
hold, it is necessary and sufficient that there exists a constant c = 0 such that
H1 5 cH2.
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Proof. The condition is trivially sufficient, so let us show that it is necessary.
Let H1 ⊂H2. The inclusion of H1 in H2 is continuous according to the closed
graph theorem(16) (the graph of this inclusion is the diagonal of H1 ×H1; as
the inclusion of H1 in E is continuous, it is closed in H1 × E, hence closed in
H1 ×H2). Let

√
c be its norm; then we have, for h ∈H1,

(2.22) ‖h‖cH2
=

1√
c
‖h‖H2

5 ‖h‖H1
,

which proves the proposition.

Corollary. For H1 and H2 to be the same vector subspace of E (with potentially
different Hilbert structures), it is necessary and sufficient that there exists a
constant c = 0 such that

(2.23) H1 5 cH2, H2 ≤ cH1.

We then say that H1 and H2 are equivalent, H1 ∼H2.

Let Γ be a salient convex cone (that is to say, such that Γ ∩ (−Γ) = {0}) in a
vector space F . Then there exists a structure on Γ analogous to the one we just
defined on Hilb(E): the multiplication by non-negative scalars and addition are
induced by those of F ; moreover, Γ defines an order structure on F , and so a
fortiori on Γ, by

(2.24) u 5 v ⇐⇒ v − u ∈ Γ.

This order structure on Γ possesses a fundamental property with respect to
addition: for u 5 v, it is necessary and sufficient that there exists w ∈ Γ such
that v = u+ w, and this w is unique (it is w = v − u).

We will prove (Theorem 1) that Hilb(E), with respect to the three structures
which we endowed on it, is isomorphic to a convex salient cone Γ, in a vector
space F ; from this, we will have (Proposition 14) that: for H = H1, it is
necessary and sufficient that there exists H2 ∈ Hilb(E) such that H = H1+H2,
and such a Hilbert subspace H2 is unique.

Proposition 3. Let H1 and H2 be two Hilbert subspaces of E. For H1∩H2 =
{0}, it is necessary and sufficient that H1 and H2 are alien with respect to the
order relation, that is to say, that K 5H1 and K 5H2 implies K = {0}.

Proof. The condition is trivially necessary, so let us show that it is sufficient.
Suppose that H1 and H2 are alien. Let us define the following scalar product
on H1 ∩H2:

(2.25) (h | k) = (h | k)H1
+ (h | k)H2

.

This defines on H1 ∩H2 the structure of a pre-Hilbert subspace of E. But it is
complete; since, if (hn), n = 1, 2, ... is a Cauchy sequence, it is a fortiori a Cauchy
sequence in H1 and in H2, so it converges to a limit in each of these two spaces;
these two limits coincide, because the convergence in H1 or in H2 implies the
convergence in E; the limits are thus equal to an element h in H1 ∩H2, and hn
converges to h in H1 ∩H2. So H1 ∩H2 is a Hilbert subspace of E; it satisfies
H1 ∩ H2 5 H1 and H1 ∩ H2 5 H2, so H1 ∩ H2 = {0}, which proves the
Proposition.
(16)Bourbaki [1], Chapter I, §3, no3, Corollary 5 of Theorem 1.
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Remark. The three structures defined on Hilb(E) can be extended to the set
of pre-Hilbert subspaces of E. Then the completion, if it exists, or the Q-
completion of a pre-Hilbert subspace H0 of E (Proposition 1b), is the smallest
Hilbert subspace of E which is larger than H0, with respect to the order relation
5.

§3. Kernels relative to E

Let E′ be the dual of E. We define a kernel relative to E as a linear map from Ē′

into E, continuous with respect to the weak topologies σ(Ē′, Ē) and σ(E,E′).
We know that it is then a fortiori continuous with respect to the topology of Ē′
and the initial topology of E(17).

Let H be a kernel of E. For ē′ ∈ Ē′, Hē′ is an element of E; thus, for
f ′ ∈ E′, we can define the scalar product 〈Hē′, f ′〉; it will play an essential role
throughout. We can also write it as (Hē′ | f̄ ′) following (0.4). The adjoint
H∗ = tH =

t
H̄ also maps Ē′ into E, and it is again a kernel (so L (Ē;E) is

equipped with a natural anti-involution); it is defined by (0.7b) or (0.7c):

(3.1)

{
∀e′ ∈ E′,∀f ′ ∈ E′, 〈H∗e′, f ′〉 = 〈Hf̄ ′, e′〉,
or (H∗ē′ | f̄ ′) = (ē′ | Hf̄ ′).

We say that a kernel H is Hermitian if H∗ = H; this translates to

〈Hē, f ′〉 = 〈Hf̄ ′, e′〉, e′ ∈ E′, f ′ ∈ E′, or
(Hē′ | f̄ ′) = (ē′ | Hf̄ ′);

(3.2)

which is equivalent, as it is well-known, to

(3.3) ∀e′ ∈ E′, 〈Hē′, e′〉 or (Hē′ | ē′) is real.

Finally, H is said to be non-negative if

(3.4) ∀e′ ∈ E′, 〈Hē′, e′〉 = 0;

a non-negative kernel is Hermitian.

Proposition 4. Every Hermitian linear map from Ē′ into E is a kernel (in
other words, it is weakly continuous).

Proof. If ē′ converges to 0 with respect to σ(Ē′, Ē), and so e′ to 0 with respect to
σ(E′, E), 〈Hf̄ ′, e′〉 converges to 0 for all fixed f ′. SinceH is Hermitian, 〈Hē′, f ′〉
also converges to 0, and Hē′ converges to 0 with respect to σ(E,E′).

Instead of considering linear maps from Ē′ into E, we can consider sesquilin-
ear forms on E′ × E′ (or on Ē′ × Ē′). A kernel H defines the form H̃

(3.5) H̃(e′, f ′) = 〈Hf̄ ′, e′〉.
(17)If u is continuous with respect to σ(Ē′, Ē) and σ(E,E′), it is a fortiori continuous with
respect to σ(Ē′, Ē) and σ(E′′, E′) so, according to Bourbaki [1], Chapter IV, §4, no2, Propo-
sition 6, it is continuous with respect to the strong topology of Ē′ and the strong topology of
E′′, so a fortiori continuous with respect to the strong topology of Ē and the initial topology
of E, the initial topology of E being coarser than the topology induced by the strong topology
of E′′.
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Proposition 5. For a sesquilinear form on E′ × E′ to be defined by a kernel
according to (3.5), it is necessary and sufficient for it to be separately weakly
continuous, and this kernel is then unique. The form is Hermitian (resp. non-
negative), if and only if this kernel is Hermitian (resp. non-negative).

Proof. 1) Let H be a kernel. If e′ converges weakly to 0, then, for a fixed
f ′, the right-hand side of (3.5) converges to 0. If f ′ converges weakly
to 0, Hf̄ ′ converges to 0 in E by the weak continuity of H, so 〈Hf̄ ′, e′〉
converges again to 0 for fixed e′.

2) Let B be a separately weakly continuous sesquilinear form on E′ × E′.
For a fixed f̄ ′ in Ē′, e′ 7→ B(e′, f ′) is a weakly continuous form on E′, so
there exists a unique element Hf̄ ′ of E such that

(3.6) B(e′, f ′) = 〈Hf̄ ′, e′〉.

H is a linear map from Ē′ into E. If f̄ ′ converges weakly to 0 in E′,
B(e′, f ′) converges to 0 for every fixed e′, so Hf̄ ′ converges weakly to 0:
H is weakly continuous, so it is a kernel. The final statement is obvious.

Remark 1. More generally, the form H̃∗ associated to the adjoint H∗ of H is
the Hermitian transpose of H̃:

(3.6b) H̃(e′, f ′) = H̃(f ′, e′).

Remark 2. Let E′∗ be the algebraic dual of E′. Every linear form on E′ is
continuous with respect to the topology σ(E′, E′∗), so every sesquilinear form on
E′×E′ is separately continuous; but E′ is the dual of E′∗, and its corresponding
weak topology is σ(E′, E′∗); so every sesquilinear form on E′ × E′ comes from
a kernel H relative to E′∗ equipped with the topology σ(E′∗, E′).

Let L (Ē′;E)(18) be the space of kernels relative to E. Then the set L +(E) =
L +(Ē′; Ē) of non-negative kernels of E is a salient convex cone of L (Ē′;E) (it
is salient because, if H and −H are non-negative, we have 〈Hē′, e′〉 = 0 for all
e′ ∈ E′, so 〈Hf̄ ′, e′〉 = 0 for any e′ and f ′ in E′, according to the relation

4〈e′, Hf̄ ′〉 = 〈e′ + f ′, H(e′ + f ′)〉 − 〈e′ − f ′, H(e′ − f ′)〉

+ i〈e′ + if ′, H(e′ + if ′)〉 − i〈e′ − if ′, H(e′ − if ′)〉,
(3.7)

so Hf̄ ′ = 0 for all f ′, so H = 0).

We are precisely going to show that there is a natural isomorphism between
Hilb(E) and L +(E).

Unless explicitly stated otherwise, we will equip L (Ē′;E) with the topology
of weak pointwise convergence (the coarsest for which each map H 7→ 〈Hf̄ ′, e′〉
is continuous).

(18)In this notation, Ē′ and E are assumed to be equipped with topologies σ(Ē′, Ē) and
σ(E,E′).
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§4. The kernel of a Hilbert subspace of E: the canonical map from
Hilb(E) into L +(E)

Let H be a Hilbert subspace of E, and j its inclusion in E. Then the adjoint j∗
is a weakly continuous linear map from Ē′ into H̄ ′. Let us call θ the canonical
isomorphism from H̄ ′ onto H . Then jθj∗:

(4.1) Ē′
j∗−→ H̄ ′ θ−→H

j−→ E

is a weakly continuous linear map H from Ē′ into E; we will say that it is the
kernel of H , or the kernel associated with H . We will note that in fact, it
maps Ē′ into H , and that it is weakly and strongly continuous from Ē′ into
H ; we will often (if it does not introduce causes for error) interchange jθj∗ and
θj∗. If, moreover, we identify H̄ ′ and H , then H, as an operator Ē′ →H , is
nothing but j∗.

Remark. If E is Hilbertisable, that is to say, if it admits Hilbert structures that
define its topology, and if H is E equipped with one of these Hilbert structures,
H is the canonical isomorphism from Ē′ onto E defined by H . Conversely, if
H is the kernel associated with a Hilbert subspace H of E, and if H(Ē′) = E,
we necessarily have H = E, so E is Hilbertisable, and H is a Hilbert structure
on E.

Proposition 6. The kernel H of H is the unique map from Ē′ into H such
that

(4.2) ∀e′ ∈ E′, ∀h ∈H , (h | Hē′)H = 〈h, e′〉(= (h | ē′)).

In particular, for e′ ∈ E′, f ′ ∈ E′, we have:

(4.3) (Hf̄ ′ | Hē′)H = 〈Hf̄ ′, e′〉, so

(4.4)
∥∥Hē′∥∥2

H
= 〈Hē′, e′〉 = 0 :

whence H is a non-negative kernel.

Proof. We have

〈h, e′〉 = 〈jh, e′〉E,E′ = (jh | ē′)E,Ē′
= (h | j∗ē′)H ,H̄ ′ = (h | θj∗ē′)H = (h | Hē′)H

(4.5)

that is to say, (4.2); Hē′ is, of course, for a given ē′, the only element of H
to satisfy this equality for any h ∈ H since this equality determines its scalar
product with every element h of H . We obtain (4.3) by taking h = Hf̄ ′ (but
(4.3) is no longer a characterisation of H, because, for example, H = 0 satisfies
(4.3) for any e′ ∈ E′ and f ′ ∈ E′).

By setting f ′ = e′, we obtain (4.4), which shows that H = 0, as required.

So H → H is a map from Hilb(E) into L +(E) which we will call the
canonical map; we will show that this is an isomorphism.
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Proposition 7. The image H(Ē′) is a dense subspace H0 of H . We can
characterise it as follows: h ∈ H belongs to H0 if and only if the linear form
k 7→ (k | h)H is continuous on H with respect to the topology induced by the
initial topology or the weak topology of E.

Proof. As j is injective, j∗Ē′ is weakly dense in H̄ ′(19), so strongly dense since
H is reflexive; as θ is a homeomorphism, θj∗(Ē′) = H(Ē′) is dense in H (we
can also say: if h ∈ H is orthogonal to H(Ē′), (4.2) shows that 〈h, e′〉 = 0 for
all e′, so h = 0).

If h is of the form Hē′, (4.2) (where we replace h by k) shows that the linear
form k 7→ (k | h) = 〈k, e′〉 is continuous on H with respect to the topology
induced by the weak topology of E. Conversely, if it is continuous with respect
to the topology induced by E, the Hahn-Banach Theorem shows that there
exists an element e′ of E′ such that

(4.5b) ∀k ∈H , (k | h)H = 〈k, e′〉;

but 〈k, e′〉 = (k | Hē′)H , so we must have h = Hē′, which proves the Proposi-
tion.

Corollary. If E′ is weakly separable (that is to say, if it admits a weakly dense
countable subset), every Hilbert subspace of E is separable.

Proof. Let D be a countable weakly total subset of E. Since H is weakly
continuous and surjective from Ē′ onto H0, H(D̄) is weakly total, so strongly
total, in H0; as H0 is dense in H , H(D̄) is total in H , and H is separable.

Remark. If E is a separable Banach space, its dual E′ is weakly separable.
More generally, if E is a separable space, and if {0} is a countable intersection of
neighbourhoods, then E′ is weakly separable. Indeed, let A′ be a weakly closed
equicontinuous subset of E′. On A′, the uniform structure of weak convergence,
that is, of pointwise convergence on E, is identical to that of convergence on a
dense subset of E, by Ascoli’s Theorem(20); then, since E has a countable dense
subset, A′ has a uniform structure with a countable entourage basis, and hence
is metrisable. Moreover, A′ is weakly compact, also by Ascoli; and a compact
metrisable space is separable. Thus, every weakly closed equicontinuous subset
is weakly separable. But, since {0} is the intersection of a sequence Vn of
neighbourhoods of 0 in E, we have that E′ is the weak closure of the balanced
convex envelope of the union of the V 0

n
(21a); each V 0

n is weakly closed and
equicontinuous, so weakly separable by what we just saw, which means that
the balanced convex envelope of their union, and hence E′, are also weakly
separable(21b).
(19)Bourbaki [1], Chapter IV, §4, no1, Proposition 3. As H is reflexive, the dual of H̄ ′ is
H̄ ; a vector subspace of H̄ ′ which is dense with respect to σ(H̄ ′, H̄ ) is then strongly dense
in H̄ ′ (Bourbaki [1], Chapter IV, §2, no3, Corollary 1 of Proposition 4).
(20)For Ascoli’s theorems, see Bourbaki [1], Chapter III, §3, no5, Proposition 5. A uniform
space with a countable base of entourages is metrisable, by Weil’s Theorem; Bourbaki [2], §2,
no4, Theorem 1.
(21a)Bourbaki [1], Chapter IV, §1, no3, Corollary of Proposition 3.
(21b)All this argument was done in Bourbaki [1], Chapter IV, §2, no2, Corollary of Proposition
3; but this Corollary introduces a hypothesis that is too strong (that E is metrisable).
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For example, the spaces E = D ,E ,S from distribution theory are separable,
in which {0} is a countable intersection of neighbourhoods(22); so E′ is weakly
separable, and even strongly separable because these E are reflexive. Actually,
D is enough for us; then, every Hilbert subspace of a space of distributions is a
Hilbert subspace of D ′, and so is separable.

It is also worth noting that the previous Corollary has nothing to do with
Hilbert spaces. For example, if H is a Banach subspace of E with continuous
inclusion, if H is reflexive, and if E′ is weakly separable, then H is separable.
Indeed, from the injectivity of H → E, we can deduce that the transpose
E′ →H ′ has a weakly dense image; since E′ is weakly separable, H ′ is weakly
separable, so strongly separable since H is reflexive, so its dual H is weakly
separable as seen above, so separable with respect to its initial topology. The
conclusion does not hold if H is not reflexive; for example, L∞, a non-reflexive
Banach subspace of D ′, is not separable.

Proposition 7b. For H0 = H(Ē′) to coincide with H , it is necessary and
sufficient that the weak topology of H is induced by the weak topology of E. If
E is a Fréchet space, it is necessary and sufficient that the initial topology of H
is induced by that of E; and it is also necessary and sufficient that H or H0 is
closed in E, or that H is a weak homomorphism (or a strong homomorphism,
if E is reflexive)(23).

Proof. Going back to the definition (4.1) of H, H0 = H is equivalent to saying
that j∗(Ē′) = H̄ ′. As j∗(Ē′) is dense because j is an injection(24), this is
equivalent to saying that j∗(Ē′) is closed in H̄ ′, and hence that j is a weak
homomorphism(25), which in turn is equivalent to saying that the weak topology
of H is induced by the weak topology of E.

Let us suppose that E is a Fréchet space. Then j is a weak homomorphism
if and only if it is a strong homomorphism, that is, if the initial topology of
H is induced by the initial topology of E; or if and only if j(H ) = H is
closed in E(26). If j is such a homomorphism, it is a monomorphism; as θ
is an isomorphism, and j∗ is a weak epimorphism (strong if E is reflexive) as
the adjoint of a monomorphism(27), H = jθj∗ is a weak homomorphism from
Ē′ into E (a strong homomorphism if E is reflexive); moreover, H0 = H is
closed in E. Conversely, if H is a weak homomorphism, θj∗ is a fortiori a weak
homomorphism, and as θ is an isomorphism, j∗ is a weak homomorphism, so j
(22)The polynomials are dense in E , so E is separable. Each of its subspaces DK , with K
a compact subset of Rn, is thus separable; so D , as a countable union of DK , is separable.
Finally, D is dense in S which is thus separable. In each of these spaces, {0} is the intersection
of the sequence of neighbourhoods Vm = {φ;

∣∣Dpφ(x)
∣∣ 5 1/m for |x| 5 m, |p| 5 m}.

(23)We call u a homomorphism from E into F if it is continuous and linear, and if the
image of an open subset of E is an open subset of u(E). A monomorphism is an injective
homomorphism, and an epimorphism is a surjective homomorphism.
(24)See footnote (19), page 20.
(25)Bourbaki [1], Chapter IV, §4, no1, Proposition 4.
(26)Dieudonné-Schwartz [1], Theorem 7, page 92. Bourbaki [1], Chapter I, §3, no3, Corollary
3 of Theorem 1.
(27)The transpose (or adjoint) of a homomorphism is a weak homomorphism of a weakly closed
image (Dieudonné-Schwartz [1], Theorem 7, page 92); the transpose of an injective map has
a weakly dense image (footnote (19) on page 20) so the transpose of a monomorphism is a
weak epimorphism. But j∗ sends Ē′ into H̄ ′, metrisable of the dual H̄ ; so if it is a weak
homomorphism it is a strong homomorphism (Bourbaki [1], Chapter IV, §4, no2, Exercise 3b).
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is also a weak homomorphism(28). If furthermore H0 is closed in E, it is closed
in H , and as it is dense, H0 = H .

Proposition 8. Let H be a Hilbert subspace of E, and H its kernel. Then an
element h of E′∗ (the algebraic dual of E′ or the weak completion of E) belongs
to H if and only if

(4.6) sup
e′∈E′

|〈h, e′〉|
〈Hē′, e′〉1/2

<∞(29);

moreover, in this case, we have:

(4.7) sup
e′∈E′

|〈h, e′〉|
〈Hē′, e′〉1/2

= ‖h‖H .

Proof. 1◦) If h ∈H , we have, according to (4.2) and (4.4):

(4.8) |〈h, e′〉| = |(h | Hē′)H | 5 ‖h‖H ‖Hē′‖H = ‖h‖H 〈Hē′, e′〉1/2;

then the left-hand side of (4.6), which we denote by l(h), is bounded above
by ‖h‖H .

2◦) Let us assume conversely that l(h) <∞. The antilinear form ē′ 7→ 〈h, e′〉 is
then zero on the set of ē′ such that Hē′ = 0; this then defines an antilinear
form Hē′ 7→ 〈h, e′〉 on H(Ē′) = H0. Moreover, its norm is 5 l(h). So
there exists an element k of H such that

(4.9) 〈h, e′〉 = (k | Hē′)H ; and ‖k‖ 5 l(h).

The equality (4.2) applied to k then shows that

(4.10) 〈h, e′〉 = 〈k, e′〉 for all e′ ∈ E′,

so k = h, which proves that h ∈ H and that ‖h‖H 5 l(h), or = l(h) by
1◦).

Remark. It is convenient to set ‖h‖H = ∞ for h /∈ H ; then (4.7) holds for
all h in E′∗.

Corollary 1. The canonical map from Hilb(E) into L +(E) is injective.

Indeed, Proposition 8 shows that the knowledge of H determines H , with
its Hilbert structure.

Corollary 2. If h ∈ E′∗ satisfies (4.6), then h ∈ E.

Proposition 9. Let B0 be the set of Hē′, e′ ∈ E′, such that 〈Hē′, e′〉 5 1, and
B̄0 its closure in E.

Then
H =

⋃
λ∈R+

λB̄0.

(28)Dieudonné-Schwartz [1], Theorem 7, page 92.
(29)If the denominator is zero and the numerator is not for an element e′ the supremum is
of course infinite; if both are zero, then we do not take this element e′ into account for the
calculation of the supremum.
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Proof. B0 is the unit ball of H0; as H0 is dense in H (Proposition 7), its closure
B in H is the unit ball of H , and, as this is weakly compact in H and hence
in E, it is closed in E, and thus coincides with B̄0, the closure of B0 in E. As
then we have H =

⋃
λ∈R+

λB, we have H =
⋃

λ∈R+

λB̄0.

Remark. This gives a new characterisation of H starting from H, thereby
reproving the Corollary of Proposition 8.

Example 1. Let us consider Example 3 on page 8. For D̄ , let us choose D itself,
and for conjugation the usual conjugation of forms, φ 7→ φ̄ (which commutes
with ∗). Then by setting h = α and e′ = ∗β in (4.2), (1.2) shows that H∗β = β,
so that Hφ =

∗−1
φ̄; H is indeed a continuous linear map from Ē′ = D into

E = D ′.
We can also take D̄ = D , the conjugation this time being ∗−1: φ 7→ ∗−1φ.

But this is not an anti-involution: for a form φ of degree n − p, ∗−1∗−1φ =
(−1)p(n−p)φ. We could customise the degrees, to avoid errors.

We will consider
p

H ⊂
p

D ′= E; for E′, we will take the space
n−p
D , with 〈

p

T ,
n−p
φ

〉 =
∫
X
T ∧φ. For Ē′, we will then take the space

p

D , with the anti-isomorphism

φ 7→ ∗−1φ, from
n−p
D onto

p

D ; there is no question of an involution here, since
E′ 6= Ē′. The product (T | φ) following (0.4) (T = e, φ = ē′ = ∗−1ψ, with
e′ = ψ = ∗φ) is then 〈T, ∗φ〉; it is this that one considers in the theory of
Hodge-de Rham.

Then, by applying (4.2) with h = α and e′ = ∗β again, (1.2) shows that
H(∗−1∗β) = β or Hβ = β; H is the identity, or more precisely the inclusion of
p

D in
p

D ′; it is the inclusion of D in D ′ if the degrees are not specified.
In this example, H is not the same operator from D into D ′, depending on

whether we choose the usual conjugation or ∗−1; this is not surprising, since H
is an operator from D̄ into D ′, and not from D into D ′.

Example 1b. Let us assume that X is an open subset of Rn and let us take
H = L2(X). Let us take the usual conjugation. We have

(f | φ)L2 =

∫
X

f(x)φ̄(x)dx = 〈f, φ̄〉;

this is (4.2) with Hφ̄ = φ̄, and H is the identity map, or the natural inclusion
of Ē′ = D in E = D ′ (a particular case of what we just saw in Example 1a for
degree p = 0, if we identify forms of degree 0 and n by the Lebesgue measure).

Example 1c. Let us return to Example 4 on page 9. Equation (1.2c), where
we replace φ by φ̄, is Equation (4.2) with h = fµ, e′ = φ̄ and ē′ = φ, if we take
Hφ = φµ, which indeed defines H as a continuous linear map from Ē′ = D◦(X)
(or D(X) if X is an open subset of Rn) into E = D ′0c (X) (or D ′(X)).

Example 2. Let us return to Example 2 on page 8. Let us denote by D the
differential operator

(4.11) D =
∑
p

(−1)|p|apD
2p.
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Then we show that the kernels of Hilbert subspaces H −s(X), H s
0 (X) and

H s(X) of D ′(X) (where s = 0 is a natural number) are respectively the dif-
ferential operator D, Green’s operator and de Neumann’s operator on an open
subset X of Rn, all considered as operators from Ē′ = D(X) into E = D ′(X).
We could show it now, but we prefer to do it later with appropriate methods
(Examples on pages 70 and 73).

Example 3. Let E = D ′(X), the space of distributions on an open subset X
of Rn. Then E′ = D(X); the complex conjugation establishes contragredient
anti-involutions on these spaces, each of which corresponds to its own conjugate
space. A kernel H is then a continuous linear map from D into D ′; the Kernel
Theorem(30) says that it is a distribution Hx,ξ on X ×X, the map H from D
into D ′ defined by

(4.12) φ 7→ (H · φ)x =

∫
X

Hx,ξφ(ξ)dξ.

The conjugate H̄ is defined by the conjugate distribution H̄x,ξ, the transpose
tH by the symmetric distribution (tH)x,ξ = Hξ,x, and the adjoint by (H∗)x,ξ =
Hξ,x; a kernel H is Hermitian if Hx,ξ = Hξ,x. A kernel H is of positive type if

(4.13) ∀φ ∈ D(X),

∫ ∫
X×X

Hx,ξφ(x)φ(ξ)dxdξ = 0;

then it is Hermitian, and H̄ is also of positive type.
If H is a Hilbert subspace of D ′(X), its kernel H is defined by (4.2):

∀φ ∈ D ,∀T ∈H , (T | H · φ̄)H = 〈T, φ〉 or
(T | H · φ)H = 〈T, φ̄〉 = (T | φ).

(4.14)

Here, (4.3) and (4.4) become:

∀φ ∈ D ,∀ψ ∈ D , (H · ψ̄ | H · φ̄)H = 〈H · ψ̄, φ〉

=

∫ ∫
X×X

Hx,ξφ(x)ψ(ξ)dxdξ.
(4.15)

(4.16) ∀φ ∈ D ,
∥∥H · φ̄∥∥2

H
=

∫ ∫
X×X

Hx,ξφ(x)φ̄(ξ)dxdξ = 0.

We will also use them in the form

(H · φ | H · ψ)H = 〈H · φ, ψ̄〉

‖H · φ‖2H = 〈H · φ, φ̄〉 =

∫ ∫
X

Hx,ξφ(x)φ(ξ)dxdξ.
(4.17)

Now let X = Rn, and E one of the following subspaces of D ′(Rn): D ′, D , E ′,
E , S ′, S , O ′M , OM , O ′C , OC (31). Every weakly continuous linear map from
E′ into E is strongly continuous(32), hence continuous from E′c into E (in all

(30)Kernel Theorem, Schwartz [2], page 143 and Schwartz [3], Chapter I, §4, Proposition 25.
(31)For all these spaces of distributions, see Schwartz [1].
(32)See footnote (17) on page 17.
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these spaces E, the bounded subsets of E are relatively compact, so E′c = E′

with the strong topology), and conversely, every continuous map from E′c into
E is weakly continuous from E′ into E(33). L (E′;E) = EεE = E “⊗εE, because
these spaces are complete and have the approximation property(34). Moreover,
for all these spaces except D , Ex “⊗εEξ is the space Ex,ξ analogous to Rn×Rn(35),
which gives the structure of the corresponding kernels; for a Hilbert subspace
H of E, we will have Equations (4.12) to (4.17), for φ, ψ... ∈ E. For example,
if H is a Hilbert subspace of S ′(Rn), H will be tempered, H ∈ S ′x,ξ, and the
preceding formulae will be correct for φ, ψ... in S .

Example 4. Let E be a Hilbert space. We can identify Ē′ with E (see Example
4 on page 4). Then a kernel H is simply a continuous linear operator from E
into itself. Its adjoint H∗ is what we usually call the adjoint, and the concepts
of Hermitian and positive operators are the usual concepts thereof.

Let H be a Hilbert subspace of E (beware, there is a possible confusion here.
This is a Hilbert subspace in the sense of §1, but it does not necessarily have
the structure induced by that of E!). Its kernel H is a non-negative Hermitian
continuous linear operator from E into E, which is defined as follows. Let j be
the inclusion H → E and j∗ its adjoint E → H (identifying H̄ ′ with H ).
Equation (4.1) becomes

(4.18) E
j∗−→H

j−→ E,H = jj∗,

which, by abuse of notation, we also often write as j∗ (see page 19), a map from
E into H . H is characterised by (4.2):

(4.19) ∀h ∈H ,∀ξ ∈ E, (h | Hξ)H = (h | ξ)E .

(4.3) and (4.4) become:

(Hξ | Hη)H = (Hξ | η)E

‖Hξ‖2H = (Hξ | ξ)E = 0.
(4.20)

The subspace H is closed in E if and only if H is a homomorphism (Propo-
sition 1b), and then H = H0 = H(E). We have H = E (as sets) if and only
if H is invertible (because, as an application from Ē′ into E, H has to be the
canonical isomorphism from Ē′ onto E with respect to the Hilbert structure
H ; see Remark on page 19). If H is a closed subspace of E with the induced
Hilbert structure, H is the orthogonal projection onto H , as shown in (4.19).

Proposition 9b. Let K be a Hilbert subspace of E, with kernel K, considered
as an operator from Ē′ into K ; let H be a Hilbert subspace of K , and let A
be its kernel of H in the sense of Example 4 above, an operator from K into
H ; then the kernel H of H with respect to E, as an operator from Ē′ into H ,
is H = AK: Ē′ K−→ K

A−→H .
(33)A continuous linear map from E′c into E is continuous with respect to σ(E′c, (E

′
c)
′) and

σ(E,E′) by Bourbaki [1], Chapter IV, §4, no2, Proposition 6; but (E′c)
′ = E, Bourbaki [1],

Chapter IV, §2, no3, Corollary of Theorem 2.
(34)For the product ε, the tensor product “⊗ε and the approximation property, see Schwartz
[3], Preliminaries and Chapter I, §1.
(35)Schwartz [3], Chapter I, §4, Proposition 28, page 98.
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Proof. Let us also identify H̄ ′ with H . Then K and H are maps Ē′ → K
and Ē′ → H , adjoints of the inclusions K → E and H → E. But H → E

factorises into H → K → E, so Ē′ H−→H factorises into Ē′ K→ K →H , and
K →H is precisely A.

Corollary. If H is a closed subspace of K , with the induced Hilbert structure,
H is equal to AK, where A is the orthogonal projection of K onto H .

It suffices to apply Proposition 9b to Example 4.

Proposition 9c. Let H be a Hilbert subspace of E, with kernel H. For the
inclusion j of H in E to be compact (in other words, for the unit ball of H to
be compact in E), it is necessary for H to belong to H “⊗εĒ, and it is sufficient
for it to belong to EεĒ(36).

Proof. Saying that j is compact is to say that the unit ball B of H is relatively
compact in E; but it is weakly compact in H and hence in E, and so it is
compact in E.

1◦) Let us assume that j is compact. Then, by polarity, the image under tj
of the polar set of B in E′ is contained in the polar set of B in H ′, so
tj is continuous from E′c into H ′, and j∗ is continuous from Ē′c into H̄ ′;
then H = θj∗, as an operator from Ē′ into H , is continuous from Ē′ into
H , so H ∈ H εĒ; as the Hilbert space H has the strict approximation
property, H ∈ H “⊗εĒ, as claimed in the statement. Naturally H = jθj∗

is the image under j ⊗ I of θj∗ ∈H “⊗εE, so belongs to E “⊗εĒ ⊂ EεĒ.

2◦) Conversely, let us assume that H ∈ EεĒ = L (Ē′c;E). Let A′ be a
compact weakly equicontinuous subset of E′, and Ā′ its conjugate in Ē′.
As H is in EεĒ, H(Ā′) is compact in E(37), and the restriction of H to
Ā′ is continuous from Ē′ with the weak topology into E with the strong
topology. Let us assume that ē′ ∈ Ā′ converges weakly to e′0; then

〈Hē′, e′〉 − 〈Hē′0, e′0〉

= 〈H(e′ − ē′0), e′〉+ 〈Hē′0, e′ − e′0〉;
(4.21)

H(e′ − e′0) converges strongly to 0, and e′ ∈ A′ is equicontinuous, so the
first term converges to 0; the second term also converges to 0, since e′
converges weakly to e′0; so 〈Hē′, e′〉 converges to 〈Hē′0, e′0〉. This proves
that Hē′, which converges weakly to Hē′0 in H , has norm 〈Hē′, e′〉1/2
which converges to that of Hē′0, so Hē′ converges to Hē′0 strongly in
H (38). Thus H = θj∗ is continuous from Ā′ (equipped with the weak

(36)See Schwartz [3], Chapter I, Proposition 11 and Corollary 1. A Hilbert space H satisfies
the strict approximation condition, because every operator u from H into H is an adherent
point in Lc(H ; H ) to P · u, where the P are orthogonal projections of finite rank and
‖P · u‖ 5 ‖u‖.
(37)Schwartz [3], Chapter I, §1, Proposition 5, page 35.
(38)In a Hilbert space, weak convergence with convergence in norm implies strong convergence.
Indeed, if xj converges weakly to x, 1

2
(x + xj) also converges weakly to x, so lim inf‖ 1

2
(x +

xj)‖ = ‖x‖; but if ‖xj‖ converges to ‖x‖, we also have lim sup‖ 1
2

(x+xj)‖ 5 ‖x‖; so lim‖ 1
2

(x+

xj)‖ = ‖x‖. But then Apollonius’s Theorem ‖xj‖2 + ‖x‖2 = 2(‖ 1
2

(x + xj)‖2 + 1
2
‖x − xj‖2)

shows that xj converges strongly to x.
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topology) into H with the strong topology; so H(Ā′) is compact in H .
As H is weakly continuous from Ē′ into H , this proves that H belongs
to H εĒ = L (Ē′c; H ). But H = θj∗, where θ is an isomorphism, so j∗
is continuous from Ē′c into H̄ ′, and tj continuous from E′c into H ′; by
polarity, this proves that j(B) is relatively compact in E, so j is compact.

Remark 1. This Proposition proves (along with Proposition 10, which we will
show later) that, even if E does not satisfy the strict approximation property,
every non-negative element of EεĒ (in the sense of the positivity of kernels) is
in E “⊗εĒ.

Remark 2. Let us suppose that, in E, every bounded subset is relatively com-
pact. Then every Hilbert subspace of E has a compact inclusion. But we also
have that every kernel H maps the equicontinuous subsets of E′ to bounded
subsets, hence relatively compact subsets, and the space L (Ē′;E) of kernels is
identical (putting aside the topology) to EεĒ. It is what we already applied at
the end of Example 3 on page 24.

§5. The Hilbert subspace associated to a non-negative kernel.
Bijectivity of the canonical map from Hilb(E) into L +(E).

Proposition 10. The canonical map from Hilb(E) into L +(E) is a bijection.

First Proof. We have already seen (Corollary of Proposition 8, or Remark fol-
lowing Proposition 9) that this map is injective. But we will see this for the
third time, and show moreover that it is surjective.

Let H be a non-negative kernel. Let us consider H0 = H(Ē′) (see Propo-
sition 7). If there exists a Hilbert subspace H with kernel H, the pre-Hilbert
structure induced on H0 is known, since we have (4.3). Conversely, (4.3) defines
a Hermitian form on H0; for u ∈H0 and v = Hē′ ∈H0, we will indeed put

(5.1) (u | v)H0
= 〈u, e′〉;

the result only depends on v = Hē′ and not on e′, because, if u = Hf̄ ′, we have

(5.2) 〈u, e′〉 = 〈Hf̄ ′, e′〉 = 〈Hē′, f ′〉 = 〈v, f ′〉,

because H is Hermitian. This Hermitian form is non-negative, because H is
non-negative . Hence, it makes H0 a pre-Hilbert space. Its topology is finer
than that induced by E. To see this, we have to show that the unit ball of H0,

B0 = {Hē′, e′ ∈ E′; 〈Hē′, e′〉 5 1},

is bounded in E, or, equivalently, weakly bounded; this is to say that, for every
fixed f ′ in E′, the set of numbers |〈Hē′, f ′〉| is bounded for Hē′ ∈ B0; this is
the result of the Cauchy-Schwarz inequality:

(5.3) |〈Hē′, f ′〉| 5 〈Hē′, e′〉1/2〈Hf̄ ′f ′〉1/2.

This result shows us in particular that H0 is Hausdorff, and hence that its
Hermitian form (5.1) is positive definite.
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Then, if there exists a H of kernel H, it is necessarily the completion of H0

in E (Propositions 7 and 1); so it is unique. To show that such a completion
exists, we have to show that the map ̂ defined in Proposition 1 is injective. Let
us consider the equality

(5.4) (k | Hē′)Ĥ0
= 〈̂(k), e′〉,

for k ∈ Ĥ0 and e′ ∈ E′; for fixed e′, this equality holds if k ∈ H0, by (5.1);
both sides depend continuously on k ∈ Ĥ0, because ̂ is continuous from Ĥ0

into E, and because it is a continuous linear form on E; so (5.4) holds for every
e′ ∈ E′ and k ∈ Ĥ0. Then, if ̂(k) = 0, k is orthogonal to H0 in Ĥ0, so k is
the zero element, which means ̂ is injective. (We can also show the existence
of the completion of H0 in E by using the other criterion given in Proposition
1: the unit ball B0 is closed in H0 with respect to the topology induced by E.
Indeed, u ∈ B0 is equivalent to u ∈H0 and

(5.5) |〈u, f ′〉| 5 1 for every f ′ ∈ E′ such that Hf̄ ′ ∈ B0;

for a given f ′, the set of u such that |〈u, f ′〉| 5 1 is closed in E, so B0 is the
intersection of H0 and a set of closed subsets of E, which satisfies the desired
criterion).

Then let H = ̂(Ĥ0) be the completion of H0 in E. For an h ∈ H , let
k be the element of Ĥ0 such that ̂(k) = h; (5.4) gives (4.2), because (k |
Hē′)Ĥ0

= (h | Hē′)H , so the kernel of H is H. We have thus shown that
given a non-negative kernel H, there exists a Hilbert subspace H , and that the
one that admits H as its associated kernel is unique, so Hilb(E) → L +(E) is
bijective.

It will subsequently be useful to record, in concise terms, this method of
constructing H from H:

On H0 = H(Ē′) we define the scalar product (5.1); this makes H0

a pre-Hilbert subspace of E, and H is the completion of H0 in E.
(5.5b)

Second Proof. Of course, this second proof that we are going to give is not essen-
tially distinct from the first. Having abundantly proven the injective character
of the canonical map, we will restrict ourselves to proving its surjectivity. Let
H be a non-negative kernel. It defines a structure of a pre-Hilbert space on
E′ (not Hausdorff, in general) by the Hermitian form (3.5); we will denote this
structure by E′H . Then E′H has a dual (E′H)′, which we will call H , which
is a Hilbert space and which is also the dual of the complete Hausdorff space
Ê′H associated to E′H . H is a subspace of the algebraic dual E′∗ of E′ (weak
completion of E); it is the set of h ∈ E′∗ which satisfy∣∣∣〈h, e′〉∣∣∣ 5 constant×

∥∥e′∥∥
E′H

(5.5c)

= constant× H̃(e′, e′)

= constant× 〈Hē′, e′〉,

in other words, (4.6). Its topology is finer than σ(E′∗, E′), hence it is a Hilbert
subspace of E′∗ with the weak topology. In addition, if L̂ is the canonical anti-

isomorphism of Ê′H onto its dual H , then its composition L : E′H → Ê′H
L̂→H
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with the canonical map from E′H into Ê′H is continuous and antilinear from E′H
into H and has the following properties:

1◦) the image L(E′H) = H0 is dense in H , because the image of E′H in Ê′H is
dense and L̂(Ê′H) = H ;

2◦) for any h ∈H and any e′ ∈ E′, denoting the image of e′ in Ê′H as ė′,

(5.6) (h | Le′)H = (h | L̂ė′)H = 〈h, ė′〉 = 〈h, e′〉;

3◦) for any e′ ∈ E′ and f ′ ∈ E′, with images ė′ and ḟ ′ in Ê′H :

(5.7a) (Lf ′ | Le′)H = (Lf ′ | L̂ė′)H = 〈Lf ′, ė′〉 = 〈Lf ′, e′〉.

(5.7b)
(Lf ′ | Le′)H = (L̂ḟ ′ | L̂ė′)H = (ė′ | ḟ ′)Ê′H = (e′ | f ′)E′H = 〈Hf̄ ′, e′〉.

The comparison of (5.7a) and (5.7b) shows that Lf ′ = Hf̄ ′. So H0 = L(E′)
is nothing but H0 = H(Ē′) already considered previously, and, on H0, the
pre-Hilbert structure induced by H is what is defined by (4.3) in accordance
with (5.7a). So H is the completion of H0 in E′∗ with the weak topology.
Proposition 0 then shows that H is itself a Hilbert subspace of E. Then (5.6)
shows that H has H as its kernel, and this is the desired Hilbert space.

The above construction of H from H can be summed up in the following
concise terms: On E′, the kernel H defines, by (3.5), a structure of a pre-Hilbert
space (non-Hausdorff, in general) E′H . H is the dual of E′H (a priori a Hilbert
subspace of E′∗ with the weak topology, it is in fact a Hilbert subspace of E).

We see the difference between the two proofs: the first never leaves E, but
shows that H0 has a completion in E; the second gives a Hilbert space H in
E′∗ to begin with, and we had to show that it is in E.

Corollary. Every separately weakly continuous non-negative sesquilinear form
B on E′ × E′ is strongly continuous. Every sesquilinear form A on E′ × E′
satisfying the upper bound

(5.8)
∣∣A(e′, f ′)

∣∣ 5 const.(B(e′, e′))1/2(B(f ′, f ′))1/2, e′ ∈ E′, f ′ ∈ E′,

or even just the upper bound

(5.8b)
∣∣A(e′, e′)

∣∣ 5 const.B(e′, e′), e′ ∈ E′,

is separately weakly continuous, and is strongly continuous.

Proof. Let us assume that (5.8) holds. B, being non-negative and separately
weakly continuous, is defined by a kernel H = 0 following (3.5) (Proposition
5): B(e′, f ′) = 〈Hf̄ ′, e′〉, or B = H̄. Then the linear form h on E′ defined by
e′ 7→ A(e′, f ′), for a fixed f ′, satisfies (4.6) thanks to (5.8); by Proposition 8,
h is in H , which is a Hilbert subspace of E with kernel H, and so h is in E:
it is weakly continuous on E′. The same reasoning shows that, for a fixed f ′,
f ′ 7→ A(e′, f ′) is weakly continuous, so A is separately weakly continuous.

If now e′ and f ′ converge strongly to 0 in E′, Hē′ and Hf̄ ′ converge strongly
to 0 in H , so their scalar product in H , which is 〈Hf̄ ′, e′〉 = B(e′, f ′), converges

29



to 0; moreover, B(e′, e′) and B(f ′, f ′) converge to 0 for the same reason, hence
so does A(e′, f ′) by (5.8); A and B are strongly continuous on E′ × E′.

Let us now suppose that only (5.8b) holds. Then it suffices to use the
following lemma.

Lemma. Let A and B be two sesquilinear forms on E′ ×E′, with B = 0. The
inequality

(5.9) ∀e′ ∈ E′,∀f ′ ∈ E′,
∣∣A(e′, f ′)

∣∣ 5 (B(e′, e′))1/2(B(f ′, f ′))1/2

is equivalent, if A is Hermitian, to the inequality

(5.10) ∀e′ ∈ E′,
∣∣A(e′, e′)

∣∣ 5 B(e′, e′);

for any A, it is implied by the following inequality:

(5.11) ∀e′ ∈ E′,
∣∣A(e′, e′)

∣∣ 5 1

2
B(e′, e′).

Proof. (5.9) always implies (5.10). Conversely, let us assume that (5.10) holds
and A is Hermitian. We have

4ReA(e′, f ′) = A(e′ + f ′, e′ + f ′)−A(e′ − f ′, e′ − f ′)∣∣4ReA(e′, f ′)
∣∣ 5 B(e′ + f ′, e′ + f ′) +B(e′ − f ′, e′ − f ′)

= 2(B(e′, e′) +B(f ′, f ′))

By replacing f ′ by λf ′, λ ∈ C such that |λ| = 1 and such that A(e′, λf ′) is real,
we deduce that

(5.12)
∣∣A(e′, f ′)

∣∣ 5 1

2
(B(e′, e′) +B(f ′, f ′)), ∀e′ ∈ E′,∀f ′ ∈ E′.

It remains to show that (5.12) implies (5.9). It is true if B(e′, e′) or B(f ′, f ′)
is zero; if indeed, for example, B(e′, e′) = 0, we replace, in (5.12), f ′ by tf ′,
t ∈ C, and we obtain |t̄A(e′, f ′)| 5 1

2 |t|
2B(f ′, f ′), which, by letting t 6= 0 tend

towards 0, gives A(e′, f ′) = 0 ∀f ′ ∈ E′, that is to say, (5.9). If now B(e′, e′)

and B(f ′, f ′) are both 6= 0, we replace, in (5.12), e′ and f ′ by e′

(B(e′,e′))1/2
and

f ′

(B(f ′,f ′))1/2
respectively, which gives

(5.13)

∣∣A(e′, f ′)
∣∣

(B(e′, e′))1/2(B(f ′, f ′))1/2
5

1

2
(1 + 1) = 1,

i.e. (5.9).
If now A just satisfies (5.10), we have

4A(e′, f ′) =A(e′ + f ′, e′ + f ′)−A(e′ − f ′, e′ − f ′)
+ iA(e′ + if ′, e′ + if ′)− iA(e′ − if ′, e′ − if ′);

|4A(e′, f ′)| ≤ 1

2
(B(e′ + f ′, e′ + f ′) +B(e′ − f ′, e′ − f ′)

+B(e′ + if ′, e′ + if ′) +B(e′ − if ′, e′ − if ′))
= 2(B(e′, e′) +B(f ′, f ′)),

that is to say, (5.12), from which we obtain (5.9) again.

Remark. If A does not satisfy an upper bound of type (5.8), it is not in general
separately weakly continuous, and, if it is, it is not in general strongly continuous
on E′ × E′.
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§6. Canonical isomorphism of Hilb(E) and L+(E)

Theorem. The canonical map Hilb(E)→ L +(E) defined in §5 is an isomor-
phism from Hilb(E) onto L +(E) with respect to the structures defined on these
sets.

This theorem is the result of 3 propositions.

Proposition 11. If the Hilbert subspace H of E has H as its kernel, the
subspace λH , where λ = 0, has λH as its kernel.

Proof. According to the definition of λH (Equation (2.1)), we have, for any
h ∈ λH and e′ ∈ E′:

(6.1) (h | λHē′)λH =
1

λ
(h | λHē′)H = (h | Hē′)H = 〈h, e′〉,

so, by Proposition 6, λH is the kernel of λH .

Proposition 12. If the Hilbert subspaces H1 and H2 of E have H1 and H2 as
kernels, the kernel of H1 + H2 is H1 +H2.

Proof. Let us use the notation of page 13. The element (H1ē
′, H2ē

′) of H1⊕H2,
for e′ ∈ E′, is orthogonal to the kernel N of the map Φ. Indeed, let (k1, k2) ∈
N , i.e. such that k1 + k2 = 0. Then

((k1, k2) | (H1ē
′, H2ē

′))H1⊕H2

= (k1 | H1ē
′)H1 + (k2 | H2ē

′)H2 = 〈k1, e
′〉+ 〈k2, e

′〉
= 〈k1 + k2, e

′〉 = 0.

(6.2)

But the scalar product of two vectors in H2 ⊕H2, if one of them is orthogonal
to N , is preserved by Φ, according to (2.11). So, for any h = h1 +h2 ∈H1 +H2

and e′ ∈ E′:

(h | (H1 +H2)ē′)H1+H2
= (h1 + h2 | H1ē

′ +H2ē
′)H1+H2

= ((h1, h2) | (H1ē
′, H2ē

′))H1⊕H2

= (h1 | H1ē
′)H1

+ (h2 | H2ē
′)H2

= 〈h1, e
′〉+ 〈h2, e

′〉
= 〈h1 + h2, e

′〉 = 〈h, e′〉,

(6.3)

so, by Proposition 6, H1 +H2 is the kernel of H1 + H2.

Proposition 13. Let H1 and H2 be two Hilbert subspaces of E, and H1 and
H2 their kernels. The relationship H1 5 H2 is equivalent to the relationship
H1 5 H2.

Proof. 1◦) Assume that H1 5 H2. Then, for any e′ ∈ E′, H1ē
′ ∈ H1, so

H1ē
′ ∈H2, and, according to (4.7):

〈H1ē
′, e′〉1/2 =

∥∥H1ē
′∥∥

H1
=
∥∥H1ē

′∥∥
H2

= sup
f ′∈E′

∣∣〈H1ē
′, f ′〉

∣∣
(H2f̄ ′, f ′)1/2

=

∣∣〈H1ē
′, e′〉

∣∣
〈H2ē′, e′〉1/2

(6.4)

so finally

(6.5) 〈H1ē
′, e′〉1/2 5 〈H2ē

′, e′〉1/2, or H1 5 H2.
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2◦) Conversely, let us assume that H1 5 H2. Then, for h ∈ E:

(6.6) sup
e′∈E′

∣∣〈h, e′〉∣∣
〈H1ē′, e′〉1/2

= sup
e′∈E′

∣∣〈h, e′〉∣∣
〈H2ē′, e′〉1/2

;

according to Proposition 8, h ∈ H1 implies that the left-hand side of
(6.6) is finite, so the right-hand side is finite and h ∈ H2; moreover,
‖h‖H1 = ‖h‖H2 , and as a result H1 5 H2. This finishes the proof of
Proposition 13, and hence proves the Theorem.

§7. Consequences of the isomorphism

Proposition 14. Let H and H1 be two Hilbert subspaces of E. For the ex-
istence of a Hilbert subspace H2 such that H = H1 + H2, it is necessary and
sufficient that H =H1, and H2 is then unique. We write H2 = H −H1.

Proof. Let H and H1 be the kernels of H and H1. The existence of H2 is
equivalent to the existence of a kernel H2 = 0 such that H = H1 +H2, and then
H2 is unique since its kernel H2 = H −H1 is unique; but the existence of H2 is
equivalent to the relationship H −H1 = 0 or H = H1, which is itself equivalent
to H =H1.

Proposition 15. Let H1 and H2 be two Hilbert subspaces of E, with kernels
H1 and H2. For H1 ⊂H2 to hold, it is necessary and sufficient that there exists
a constant c = 0 such that H1 5 cH2.

Corollary. For H1 ∼H2 to hold, that is, for H1 and H2 to be the same vector
subspace of E (with possibly different Hilbert structures), it is necessary and
sufficient that there exists a constant c = 0 such that H1 5 cH2 and H2 5 cH1.

This Proposition and its Corollary result from Proposition 2 and its Corol-
lary, by applying the Theorem.

Proposition 16. Let H1 and H2 be two Hilbert subspaces of E, with kernels
H1 and H2. For H1 ∩H2 = {0} to hold, it is necessary and sufficient for H1

and H2 to be alien, that is to say that any kernel K = 0 satisfying K 5 H1 and
K 5 H2 is the zero kernel.

This results from Proposition 3 and the Theorem.

Proposition 17. Let H and H1 be two Hilbert subspaces of E, with kernels
H and H1. For H1 to be a subspace of H with the induced Hilbert structure, it
is necessary and sufficient that H −H1 = 0 and that H1 and H −H1 are alien;
then the space H2 such that H = H1 + H2 is the orthogonal complement of
H1 in H with the induced Hilbert structure.

Proof. 1◦) Let us assume that H1 ⊂H and that H1 has the induced Hilbert
structure. If then H2 is the orthogonal complement of H1 in H , we
have H1 + H2 = H (pages 13-14). If H2 is the kernel of H2, we have
H1 + H2 = H or H2 = H − H1 = 0; but H1 ∩H2 = {0}, so H1 and
H −H1 are alien (Proposition 16).
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2◦) Conversely, let us assume that H−H1 = 0 and that H1 and H2 = H−H1

are alien. Then, if H2 is the Hilbert subspace with kernel H2, we will
have H1 ∩H2 = {0} and H = H1 + H2; so H1 ⊂ H with the induced
Hilbert structure.

Proposition 18. 1◦) Let (Hi)i∈I be a descending filtration of Hilbert sub-
spaces of E, with kernels Hi.
Then inf

i∈I
Hi = H exists, and its kernel is inf

i∈I
Hi = H, which is also

lim
i
Hi, in L (Ē′;E) equipped with the topology of weak pointwise conver-

gence. H is the subspace of ∩
i∈I

Hi consisting of h such that

sup
i∈I
‖h‖Hi

<∞, and then
‖h‖H = sup

i∈I
‖h‖Hi

= lim
i
‖h‖Hi

(h | k)H = lim
i∈I

(h | k)Hi

(7.1)

2◦) Let (Hi)i∈I be an ascending filtration of Hilbert subspaces of E, with ker-
nels Hi. For it to be bounded from above in Hilb(E), it is necessary
and sufficient that sup

i∈I
〈Hiē

′, e′〉 < +∞ for every e′ ∈ E′. In this case,

sup
i∈I

Hi = H exists, and its kernel is sup
i∈I

Hi = H, which is also lim
i
Hi

with respect to the topology of weak pointwise convergence. H is the Q-
completion in E of the pre-Hilbert subspace ∪

i∈I
Hi equipped with the struc-

ture

(7.2)

‖h‖ = inf
i∈I
‖h‖Hi

= lim
i
‖h‖Hi

(h | k) = lim
i

(h | k)Hi
.

Proof. 1◦) Let us first start with a descending filtration. I is an ordered index
set, directed upwards; for j = i, we have Hj 5 Hi and Hj 5 Hi. Limits
are taken in the upwards direction in I. For every e′ ∈ E′, lim

i
〈Hiē

′, e′〉
exists and is equal to inf

i∈I
〈Hiē

′, e′〉; then (3.7) shows that lim
i
〈Hif̄

′, e′〉 exists
for every e′, f ′ in E′; let us call it A(e′, f ′). A is a non-negative Hermitian
form on E′ × E′. For any i ∈ I, we have A(e′, e′) 5 〈Hiē

′, e′〉, so, by the
Corollary of Proposition 10, A is separately weakly continuous, and there
exists (Proposition 5) a kernel H = 0 such that A(e′, f ′) = 〈Hf̄ ′, e′〉. H is
the limit of Hi in L (Ē′;E) (with respect to weak pointwise convergence)
and it is trivially the infimum of Hi in L +(E). The correspondence
between the order structures of Hilb(E) and L +(E) shows that the Hi

necessarily have a infimum H in Hilb(E), and that the kernel of H is H.
With the notations of the Remark that follows Proposition 8, we have

‖h‖H = sup
e′∈E′

∣∣〈h, e′〉∣∣
〈Hē′, e′〉1/2

= sup
e′∈E′

(
sup
i∈I

∣∣〈h, e′〉∣∣
〈Hi, ē′, e′〉1/2

)

= sup
i∈I

(
sup
e′∈E′

∣∣〈h, e′〉∣∣
〈Hiē′, e〉1/2

)
= sup

i∈I
‖h‖Hi

.

(7.3)
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So H is the subspace of ∩
i∈I

Hi formed of the h such that sup
i∈I
‖h‖Hi

<∞,

and we have the first relationship in (7.1); the second results from (2.19b).

2◦) Let us now take an ascending filtration; I has the same properties but
j = i entails Hj = Hi and Hj = Hi. Let us suppose that the Hi are
bounded from above by a Hilbert subspace K with kernel K; then

sup
i∈I
〈Hiē

′, e′〉 5 〈Kē′, e′〉 < +∞.

Conversely, let us suppose that this condition is realised: sup
i∈I
〈Hiē

′, e′〉 <

+∞. Then lim
i
〈Hiē

′, e′〉 exists and is equal to sup
i∈I
〈Hiē

′, e′〉; (3.7) shows

that lim
i
〈Hif̄

′, e′〉 exists; let us call it A(e′, f ′). A is a non-negative Her-

mitian form on E′ × E′ (a priori not necessarily separately weakly con-
tinuous). By the remark following Proposition 5, A comes from a kernel
H relative to E′∗, defining a Hilbert subspace H of E′∗. H bounds all
the Hi from above, so H ∩ E (which is a Hilbert space by Proposition
0) bounds them from above too: the ascending filtration is bounded from
above. Moreover, H is a weak pointwise limit and the supremum of the
Hi in L (Ē′;E′∗), so H is the supremum of the Hi in Hilb(E′∗). As
H ∩ E bounds the Hi from above and H from below, we necessarily
have H ∩E = H , or H ⊂ E, and H ∈ L (Ē′;E). Let us determine this
H . Firstly, H ⊃Hi, so H ⊃ ∪

i∈I
Hi, which is a vector space because we

have a filtration. On ∪
i∈I

Hi, h 7→ inf
i∈I
‖h‖Hi

= lim
i
‖h‖Hi

is a semi-norm;

Equation (2.19b) then shows that we can define a non-negative Hermitian
scalar product (h | k) = lim

i
(h | k)Hi

on it, and that ‖h‖ = (h | h), so

∪
i∈I

Hi is pre-Hilbert. Moreover, ‖h‖Hi
= ‖h‖H so inf

i∈I
‖h‖Hi

= ‖h‖H .

The inclusion ∪
i∈I

Hi →H is thus continuous, and a fortiori the inclusion

∪
i∈I

Hi → E is also continuous (so ∪
i∈I

Hi is Hausdorff). Thus ∪
i∈I

Hi is

a pre-Hilbert subspace of E, which is evidently the smallest pre-Hilbert
subspace of E that bounds the Hi from above. By Proposition 1b (or
the remark on page 17), there is a supremum of the Hi; namely the Q-
completion of ∪

i∈I
Hi in E, which is thus H .

We have shown, as a by-product, the following result:

Corollary. If the Ai are separately weakly continuous non-negative Hermitian
forms on E′ × E′, if they constitute an ascending filtration, and if, for every
e′ ∈ E′, sup

i∈I
Ai(e

′, e′) < +∞, they have a pointwise limit on E′ × E′, which is

again separately weakly continuous.

Remark 1. Hilb(E) and L +(E) are not lattices. There exists an infimum of a
descending filtration but not an infimum of any two elements. (In order to see
this, it suffices to remark that, for E = C2, we have E′ = C2, and that there does
not exist, in general, an infimum of two non-negative Hermitian forms on C2).
Likewise, there exists a supremum of an upper-bounded ascending filtration,
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but not, in general, a supremum of two elements. (A set with two elements is
bounded from above by their sum).

Remark 2. An ascending filtration of Hilb(E) is not necessarily bounded from
above. It is the case if I is the set of non-negative reals and Ht = tK , where
K 6= {0} is fixed and t = 0 is real.

Remark 3. In the case of a descending filtration, H = inf
i∈I

Hi can be different

from ∩
i∈I

Hi. This is the case if I is the set of real numbers strictly greater than

0, and Ht = 1
tK , where K 6= {0} is fixed and t > 0. Then ∩

t>0
Ht = K ,

however inf
t>0

Ht = {0}.

Remark 4. In the case of an ascending filtration bounded from above, it could
be that ∪

i∈I
Hi, a pre-Hilbert subspace of E, does not have a completion in

E. Let, for example, H0 be a pre-Hilbert subspace of E, but not having a
completion in E (see counterexample (1.5)). If the Hi are the subspaces of H0

with finite dimension, equipped with the induced structure, they are Hilbert
subspaces of E. They constitute an ascending filtration, bounded from above
by the Q-completion H of H0 in E. Then ∪

i∈I
Hi = H0 which does not have a

completion in E, and sup
i∈I

Hi = H .

Infinite sums of Hilbert subspaces of E.

Let (Hi)i∈I be a family of Hilbert subspaces of E. We can define their
abstract Hilbert sum ⊕̂

i∈I
Hi; an element of this sum is a family (hi)i∈I , hi ∈Hi,

such that
∑
i∈I
‖hi‖2Hi

< +∞, with

(7.4)
∥∥(hi)i∈I

∥∥2

⊕̂
i∈I

Hi
=
∑
i∈I
‖hi‖2Hi

.

The elements (hi)i∈I , for which all but a finite number of the hi are zero, form
a dense subspace ⊕

i∈I
Hi of ⊕̂

i∈I
Hi.

Proposition 19. The following three properties are equivalent.

1◦) The linear map Φ0 from ⊕
i∈I

Hi into E, defined by

(7.5) Φ0

(
(hi)i∈I

)
=
∑
i∈I

hi,

is continuous.

2◦) The finite sums
∑
i∈J

Hi, for finite subsets J of I, are bounded from above

in Hilb(E).

3◦) For every e′ ∈ E′,
∑
i∈I
〈Hiē

′, e′〉 < +∞.
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If these hold, we say that the family (Hi)i∈I is summable. Then Φ0 extends
to a continuous linear map Φ from ⊕̂

i∈I
Hi into E, defined again by (7.5) (the

condition
∑
i∈I
‖hi‖2Hi

< +∞ implies that
∑
i∈I

hi are summable in E). Let N be

the kernel of Φ; Φ factorises into ⊕̂
i∈I

Hi
π−→ ( ⊕̂

i∈I
Hi)/N

Φ•−→ E.

We denote the image Φ( ⊕̂
i∈I

Hi) by
∑
i∈I

Hi, with the Hilbert structure trans-

ported by Φ• from that of ( ⊕̂
i∈I

Hi)/N . The elements of
∑
i∈I

Hi are those that

can be expressed as sums
∑
i∈I

hi, summable in E, with hi ∈Hi,
∑
i∈I
‖hi‖2Hi

<∞,

and we have

(7.6) ‖h‖2∑
i∈I

Hi
= inf

(
∑
i∈I

hi)=h

∑
i∈I
‖hi‖2Hi

 .

Moreover,
∑
i∈I

Hi is equal to the supremum of the finite sums
∑
i∈J

Hi, where J

is a finite subset of I; and its kernel is
∑
i∈I

Hi, summable with respect to the

topology Ls(Ē
′;E) of pointwise convergence.

Proof. Suppose that 1◦) holds. Then Φ0 extends to a continuous linear map Φ
from ⊕̂i∈IHi into E. If (hi)i∈I is an element of ⊕̂

i∈I
Hi, it is the limit of the

elements ((hi)i∈J , (0)i∈I−J), following the filtration of finite subsets J of I; its
image under Φ is thus necessarily the limit of

∑
i∈J

hi following this filtration,

that is to say, the sum
∑
i∈I

hi, summable in E.

Considering the definition of the quotient norm in ( ⊕̂
i∈I

Hi)/N and the fact

that Φ• transports the Hilbert structure,
∑
i∈I

Hi defined in the statement has

the norm in (7.6). But, if J is a finite subset of I, an element k of
∑
i∈J

Hi is of

the form
∑
i∈J

ki, and we have, according to (2.9),

(7.7) ‖k‖2∑
i∈J

Hi
= inf

(
∑
i∈J

ki)=k
‖ki‖2Hi

;

so
∑
i∈J

Hi is a subspace of
∑
i∈I

Hi, with an inclusion of norm 5 1: the
∑
i∈J

Hi is

bounded from above by
∑
i∈I

Hi, and we therefore have 2◦).

Let us now suppose that 2◦) holds. As the kernel of
∑
i∈J

Hi is
∑
i∈J

Hi, Propo-

sition 11 shows that we have 3◦).
Finally, suppose that we have 3◦). To see that Φ0 is continuous, we have to

show that the image under Φ0 of the unit ball B0 of ⊕
i∈I

Hi is weakly bounded. So

let e′ ∈ E′. Φ0(B0) is the set of the finite sums
∑
i∈J

hi, such that
∑
i∈J
‖hi‖2Hi

5 1.
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For h ∈ Φ0(B0) and h =
∑
i∈J

hi, we have

∣∣〈h, e′〉∣∣ 5∑
i∈J

∣∣〈hi, e′〉∣∣ =
∑
i∈J

∣∣(hi | Hiē
′)Hi

∣∣
5

∑
i∈J
‖hi‖2Hi

1/2∑
i∈J
〈Hiē

′, e′〉

1/2

5

∑
i∈I
〈Hiē

′, e′〉

1/2

;

(7.8)

so Φ0(B0) is weakly bounded, Φ0 is continuous, we have 1◦), and the three given
conditions are equivalent. Let us suppose that they hold. Proposition 18 says
that the series

∑
i∈I

Hi is summable with respect to the topology of weak point-

wise convergence; we have to show here that it is summable with respect to the
topology of strong pointwise convergence. But

∑
i∈I
‖Hiē

′‖2Hi
=
∑
i∈I
〈Hiē

′, e′〉 <

+∞; so the image under Φ of (Hiē
′)i∈I ∈ ⊕Hi, in other words,

∑
i∈I

Hiē
′, is

summable in E, which proves our assertion. But Proposition 18 says that∑
i∈I

Hi = sup
J finite ⊂I

(
∑
i∈J

Hi) is the kernel of sup
J finite ⊂I

(
∑
i∈J

Hi); if we show that

it is also the kernel of
∑
i∈i

Hi, we will have finished the proof.

The element (Hiē
′)i∈I of ⊕̂

i∈I
Hi is orthogonal to the kernel N of Φ; this can

be seen from (6.2). We thus have, as in (6.3), for h ∈
∑
i∈I

hi ∈
∑
i∈I

Hi:

〈
∑
i∈I

hi, e
′〉 =

∑
i∈I
〈hi, e′〉

=
∑
i∈I

(hi | Hiē
′)Hi

= ((hi)i∈I | (Hiē
′)i∈I) ⊕̂

i∈I
Hi

=

∑
i∈I

hi |

∑
i∈I

Hi

 ē′

∑
i∈I

Hi

,

(7.9)

which proves that
∑
i∈I

Hi is the kernel of
∑
i∈I

Hi.

Corollary 1. Let H be a Hilbert subspace of E, a direct Hilbert sum of closed
(pairwise orthogonal) subspaces Hi, i ∈ I. Then the kernel H of H is the
sum

∑
i

Hi of the kernels of Hi, the series being summable with respect to the

topology Ls(Ē
′;E) of pointwise convergence.

Indeed, in this case,
∑
i∈I

Hi = H (here, N = {0} and Φ is an isomorphism

from ⊕̂
i∈I

Hi onto H ).

Corollary 2. Let H be a Hilbert subspace of E, and let (ei)i∈I be a Hilbert
basis of H . Then the kernel of H is

∑
i

ei⊗ ēi, a summable series in Ls(Ē
′;E).
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Proof. Let e ∈ E. The element e′ of Ē defines the scalar form f̄ ′ 7→ 〈e, f ′〉 on
Ē′. Then e⊗ ē ∈ E ⊗ Ē ⊂ EεĒ is the sesquilinear form (f ′, g′) 7→ 〈e, f ′〉〈e, g′〉
on E′ × E′, or the kernel He : f̄ ′ 7→ 〈e, f ′〉e.

We can associate to the vector e of E the Hilbert subspace He = Ce of E,
equipped with the scalar product:

(7.10) (αe | βe)He = αβ̄.

Then He = e⊗ ē is the kernel of He, because, for any h = αe ∈He and f ′ ∈ E′,
we have

(7.11) 〈h, f ′〉 = α〈e, f ′〉 = (αe | 〈e, f ′〉e)He
= (h | Hef̄

′)He
.

Then, if the ei form a Hilbert basis of H , H is the Hilbert direct sum of the
subspaces Hei , and it suffices to apply Corollary 1 to obtain the result.

Corollary 3. (Orthogonal decomposition of a non-negative kernel). Every ker-
nel H = 0 relative to E admits a decomposition into a sum

∑
i∈I

ei ⊗ ēi, ei ∈ E,

the series being summable with respect to the topology of pointwise convergence;
I is countable if E′ is weakly separable. (Apply the preceding Corollary, and the
Corollary of Proposition 7).

Corollary 4. Let (Hi)i∈I be a family of Hilbert subspaces of E, with kernels Hi.
For the existence of a Hilbert subspace of E that admits the Hi as closed orthog-
onal subspaces with the induced Hilbert structures, the following two conditions
are necessary and sufficient:

1◦) For any e′ ∈ E′,
∑
i∈I
〈Hiē

′, e′〉 < +∞;

2◦) The system of Hi is Hilbert-free in E, in the sense that, if hi ∈Hi satisfy∑
i∈I
‖hi‖2Hi

< +∞ and
∑
i∈I

hi = 0 (the series being summable in E), then

all hi are zero.

Proof. The existence of such a space is exactly implied by the family (Hi)i∈I
being summable, i.e. the first condition, and that the map Φ of Proposition
19 is an isomorphism from ⊕̂

i∈I
Hi onto

∑
i∈I

Hi (with kernel N = {0}), i.e. the

second condition.

Corollary 5. Let (ei)i∈I be a family of elements of E. For the existence of
a Hilbert subspace of E that admits them as a Hilbert basis, the following two
conditions are necessary and sufficient:

1◦) For any f ′ ∈ E′,
∑
i∈I
|〈ei, f ′〉|2 < +∞.

2◦) The system of the ei is Hilbert-free in E, in the sense that, if some ci ∈ C
satisfying

∑
i∈I
|ci|2 < +∞ and

∑
i∈I

ciei = 0 (summable series in E), then all

ci are zero.

It suffices to apply Corollary 4 to the Hei (in the notation of Corollary 2).
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Integral of Hilbert subspaces of E.

Let Z be a locally compact space equipped with a measure µ = 0. Let
ζ → H (ζ) be a map from Z into Hilb(E); we will say that this map is µ-
integrable (or that the family (H (ζ))ζ∈Z of Hilbert subspaces is µ-integrable)
if, for every e′ ∈ E′, the function ζ → 〈H(ζ)ē′, e′〉 (where H(ζ) is the kernel
of H (ζ)) is µ-integrable. In other words, ζ → H(ζ) is weakly µ-integrable in
L (Ē′;E) equipped with the topology of weak pointwise convergence.

Proposition 20. Let ζ →H (ζ) be a µ-integrable family of Hilbert subspaces of
E, and let us suppose that the dual E′ is weakly separable. Let us say that a field
of vectors ζ 7→ h(ζ) ∈H (ζ) is µ-measurable if the function ζ → h(ζ) on Z with
values in E is weakly µ-measurable; these fields define on H (ζ) a structure S of
a µ-measurable field of Hilbert spaces(39). Let us denote by

∫ ⊕
Z

H (ζ)dµ(ζ) the
space of classes (modulo equality µ-almost everywhere) of fields of µ-measurable
vectors ζ → h(ζ) such that

∫
Z
‖h(ζ)‖2H (ζ)dµ(ζ) < +∞ with

(7.12)
∥∥h(ζ)ζ∈Z

∥∥2∫⊕
Z

H (ζ)dµ(ζ)
=

∫
Z

∥∥h(ζ)
∥∥2

H (ζ)
dµ(ζ).

There exists a continuous linear map Φ from
∫ ⊕
Z

H (ζ)dµ(ζ) into E′∗ (equipped
with the topology σ(E′∗, E′)) defined by:

(7.13) Φ(h(ζ)ζ∈Z) =

∫
Z

h(ζ)dµ(ζ) ∈ E′∗,

the right-hand side being the weak integral of a weakly integrable function. Let
N be the kernel of Φ. Then Φ factorises into∫ ⊕

Z

H (ζ)dµ(ζ)
π→

(∫ ⊕
Z

H (ζ)dµ(ζ)

)
/N

Φ•→ E.

We denote by H =
∫
Z

H (ζ)dµ(ζ) the Hilbert subspace of E′∗ that is transported
by Φ• from the quotient (

∫ ⊕
Z

H (ζ)dµ(ζ))/N .
It is set of the h ∈ E′∗ that can be written as∫

Z

h(ζ)dµ(ζ), (h(ζ))ζ∈Z ∈
∫ ⊕
Z

H (ζ)dµ(ζ),

with the norm

(7.14) ‖h‖2∫
Z

H (ζ)dµ(ζ) = inf∫
Z
h(ζ)dµ(ζ)=h

∫
Z

∥∥h(ζ)
∥∥2

H (ζ)
dµ(ζ).

The kernel of H =
∫
Z

H (ζ)dµ(ζ) relative to E′∗ is

H =

∫
Z

H(ζ)dµ(ζ) ∈ L (Ē′;E′∗)

(weak integral of ζ → H(ζ), a weakly integrable function with values in L (Ē′;E)
equipped with the topology of weak pointwise convergence).
(39)Here, we follow the notations and terminology of Dixmier [1].
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Proof. Let e′n, n = 1, 2, ... be a weakly total sequence in E′. Let us consider the
fields of vectors ζ → hn(ζ) = H(ζ)ē′n. For any ζ, the H(ζ)ē′n form a weakly
total, and therefore strongly total, sequence in H(ζ)(Ē′) ⊂H (ζ), and hence in
H (ζ) itself.

Moreover, the function ζ → (hm(ζ) | hn(ζ))H (ζ) = 〈H(ζ)ē′m, ē
′
n〉 is measur-

able by the hypothesis made on the kernels H(ζ).
So(40) there exists a unique measurable field structure S of Hilbert spaces

on the family of the H (ζ), for which the ζ → hn(ζ) are measurable fields. If
ζ → h(ζ) is a measurable field with respect to this structure S, it belongs to
the family generated by the ζ → φ(ζ)hn(ζ), where φ is a complex measurable
function on Z. Then the function ζ → 〈h(ζ), e′〉 belongs to the family generated
by the functions ζ → 〈φ(ζ)hn(ζ), e′〉 = φ(ζ)〈H(ζ)ē′n, e

′〉; these are measurable
by the hypothesis made on the kernels H(ζ), so ζ → 〈h(ζ), e′〉 is measurable,
and ζ → h(ζ) is weakly measurable on Z with values in E. Conversely, if this
is the case, ζ → (h(ζ) | hn(ζ))H (ζ) = 〈h(ζ), e′n〉 is measurable, so ζ → h(ζ) is a
measurable field with respect to the structure S. The structure S is therefore
indeed what we described in the statement, for which the measurable fields are
the maps ζ → h(ζ) ∈ H (ζ), weakly µ-measurable on Z with values in E (in
particular, S is independent of the choice of the e′n).

Let us show that (7.13) makes sense. If ζ → h(ζ) is in
∫ ⊕
Z

H (ζ)dµ(ζ), it is
a measurable field with respect to the structure S, so weakly measurable with
values in E. To show that this function with values in E is weakly integrable,
and hence that (7.13) makes sense, it suffices to show that ζ → |〈h(ζ), e′〉| is
integrable. But

(7.15)
∣∣∣〈h(ζ), e′

〉∣∣∣ =
∣∣∣(h(ζ) | H(ζ)ē′)H (ζ)

∣∣∣ 5 ∥∥h(ζ)
∥∥

H (ζ)
〈H(ζ)ē′, e′〉1/2

an integrable function as the product of two functions in L2; moreover:∣∣∣∣∣
〈∫

Z

h(ζ)dµ(ζ), e′
〉∣∣∣∣∣ =

∣∣∣∣∫
Z

〈
h(ζ), e′

〉
dµ(ζ)

∣∣∣∣
5
∫
Z

∣∣∣〈h(ζ), e′
〉∣∣∣ dµ(ζ) =

∫
Z

∣∣∣(h(ζ) | H(ζ)ē′)H (ζ)

∣∣∣ dµ(ζ)

5

(∫
Z

∥∥h(ζ)
∥∥2

H (ζ)
dµ(ζ)

)1/2(∫
Z

〈
H(ζ)ē′, e′

〉
dµ(ζ)

)1/2

;

(7.16)

so Φ is continuous from
∫ ⊕
Z

H (ζ)dµ(ζ) into E′∗, since the image of the unit ball
is bounded.

Then we can describe the space
∫
Z

H (ζ)dµ(ζ) = H ⊂ E according to the
statement, and its norm is (7.14). Let us write H =

∫
Z
H(ζ)dµ(ζ), a weak

integral of ζ → H(ζ) with values in L (Ē′;E) equipped with the topology of
weak pointwise convergence; H is a linear map from Ē′ into E′∗, with

(7.17) 〈Hf̄ ′, e′〉 =

∫
Z

〈H(ζ)f̄ ′, e′〉dµ(ζ).

Let us show that H is the kernel of H ⊂ E′∗. As in Propositions 12 and 19, we
see immediately that the field ζ → H(ζ)ē′ is orthogonal to N in

∫ ⊕
Z

H (ζ)dµ(ζ).

(40)Dixmier [1], Proposition 4, page 144.
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In the same way again, we deduce from this that, for h =
∫
Z
h(ζ)dµ(ζ) ∈H :

〈h, e′〉 = 〈
∫
Z

h(ζ)dµ(ζ), e′〉 =

∫
Z

〈h(ζ), e′〉dµ(ζ)

=

∫
Z

(h(ζ) | H(ζ)ē′)H (ζ)dµ(ζ)

= (h(ζ)ζ∈Z | (H(ζ)ē′)ζ∈Z)∫⊕
Z

H (ζ)dµ(ζ)

= (

∫
Z

h(ζ)dµ(ζ) |
∫
Z

H(ζ)ē′dµ(ζ))H

= (h | Hē′)H ,

(7.18)

which, by (4.2), shows that H is the kernel of H .

Remark. We will often have to show that H ⊂ E. For that, it will suffice
(Proposition 0) to show that H(Ē′) ⊂ E, in other words, that the weak integral∫
Z
H(ζ)dµ(ζ) ∈ L (Ē′;E′∗) is an element of L (Ē′;E). We have many criteria

for that: not only all those concerning weak integrals in general(41), but also,
for example, Propositions 18, 2◦), and 19.

§8. Effect of a continuous linear map

Let E and F be locally convex, quasi-complete Hausdorff spaces, and u a weakly
continuous linear map from E into F (42a). Let H be a Hilbert subspace of E;
let us denote by N = H ∩u−1({0}) the kernel(42b) of the restriction of u to H .
Then this restriction factorises into H

π→H /N
u→ F , where u is an injective

continuous linear map, so it is a bijection from H /N onto the image u(H ) of
H under u. We will then say that u(H ) is the Hilbert subspace of F , obtained
by transporting the Hilbert structure of H /N onto u(H ) under the bijection
u.

We thus see that the norm of u(H ) is simply defined by

(8.1) ‖k‖u(H ) = inf
h∈H ,u(h)=k

‖h‖H .

We can also say that u(H ) is the smallest Hilbert subspace of F (with respect
to the order relation 5) such that u is a continuous linear map of norm 5 1 from
H into this space. Indeed, if M is a Hilbert subspace of F containing u(H ),
and such that u : H → M is of norm 5 1, then u : H /N → M is also of
norm 5 1, so the inclusion of u(H ) in M is of norm 5 1, and u(H ) 5M . We
have already seen a diverse set of examples: even in the definition of H1 + H2

in §2, 2◦), Φ is a continuous linear map from H1 ⊕H2 into E, and H1 + H2

is nothing but the image Φ(H1 ⊕H2) in the above sense. It is the same in
Propositions 19 and 20:

∑
i∈I Hi = Φ( ⊕̂

i∈I
Hi), and∫

H (ζ)dµ(ζ) = Φ(

∫ ⊕
Z

H (ζ)dµ(ζ)).

(41)See Bourbaki [3], Chapter VI, §1.
(42a)Let us recall that, if E is metrisable, a weakly continuous linear map from E into F is
continuous with respect to the initial topologies (Bourbaki [1], Chapter IV, §4, no2, Corollary
of Proposition 7). In particular, the restriction of u to H is continuous from H into F .
(42b)Kernel here means the pre-image of {0}, and has nothing to do with the kernels associated
to Hilbert subspaces in this article!
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Moreover, the space λH with λ = 0, defined in §2, 1◦), is nothing but the image
of H by the homothety e 7→

√
λe from E into E.

Another important case was implicitly encountered many times. Let us
suppose that E is a subspace of F , equipped with a topology such that the
inclusion u of E in F is weakly continuous. Then every Hilbert subspace of E
is a fortiori a Hilbert subspace of F , which amounts to identifying it with its
image under u. For some Hilbert subspaces of E, multiplication by non-negative
scalars, addition and the order relation in E and in F are identical; if H =H1,
the difference H −H1 is the same in E or in F (and the same even in H ).

If now u is weakly continuous and antilinear from E into F , we will define
u(H ) with the “anti-transported” Hilbert structure from H /N on it by u;

(8.1b) (u(α) | u(β))u(H ) = (β | α)H /N , α ∈H /N , β ∈H /N

so that we again have (8.1).
Regardless of whether u is linear or antilinear, let K be the orthogonal

complement of N in H . Then the restriction of u to K is an isomorphism
(or an anti-isomorphism), and u(H ) has the structure transported (or anti-
transported) from that of K by u. The scalar product of two vectors of H is
equal to (or the conjugate of) that of their images by u in u(H ) each time one
of the two is in K . We deduce that the closed (resp. open) unit ball of u(H )
is exactly the image under u of the closed (resp. open) unit ball of H . Finally,
if E, F and G are three locally convex quasi-complete vector spaces, if u (resp.
v) is a weakly continuous linear or antilinear map from E into F (resp. from F
to G), and if H is a Hilbert subspace of E, we have, according to (8.1):

(8.1c) (v ◦ u)(H ) = v(u(H )).

Proposition 21. If u is a weakly continuous linear or antilinear map from E
into F , and if H is a Hilbert subspace of E with kernel H, the kernel of u(H )

with respect to F is u(H) = uHu∗: F̄ ′ u
∗

→ Ē′
H→ E

u→ F . Moreover, the set of
the Hu∗f̄ ′, f ′ ∈ F ′, is a dense subspace of K , the orthogonal complement of
N in H .

Proof. First, let u be linear. Let us find the orthogonal complement of the set
Hu∗(F̄ ′) of the Hu∗f̄ ′ in H . Let h be an element of H :

(8.2) (h | Hu∗f̄ ′)H = 〈h, tuf ′〉E,E′ (because u∗f̄ ′ = tuf ′) = 〈uh, f ′〉F,F ′ ;

so h is orthogonal toHu∗(F̄ ′), if and only if uh = 0, or h ∈ N : N is the orthog-
onal complement that we were searching for. Then the orthogonal complement
K of N is the closure in H of the set Hu∗(F̄ ′).

Then the scalar product (h | Hu∗f̄ ′)H is always equal to that of the images
in u(H ):

(8.3) 〈uh, f ′〉F,F ′ = (h | Hu∗f̄ ′)H = (uh | uHu∗f̄ ′)u(H ),

which proves, by Proposition 6, that uHu∗ is the kernel of u(H ) in F .
If now u is antilinear, we will have the same result, but with the modification:

(8.4) 〈uh, f ′〉F,F ′ = (h | Hu∗f̄ ′)H = (uh | uHu∗f ′)u(H ).
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Remark. Proposition 21 is in fact what served as the definition of the kernel
of H in E. The kernel of H in H is the canonical isomorphism A from H̄ ′

onto H ; if j is the inclusion of H in E, then the kernel of H = j(H ) in E is
jAj∗ (Equation (4.1)).

Example 1. Let F : S ′(Rn)→ S ′(Rn) be the Fourier transform(43). We have
tF = F , because of the symmetry of the function (x, ξ) 7→ exp(−2iπ〈x, ξ〉).
Let us suppose that the reciprocity formula FF = FF = I is known (which
entails the bijectivity of F ); we thus also have FF ∗ = F ∗F = I. The Hilbert
subspace L2 of S ′ has the identity I as its kernel (more precisely, the inclusion
of S in S ′). The image F (L2) thus has F IF ∗ = FF ∗ = I for its kernel: it is
L2 itself. F , being injective, is thus an isometry from L2 onto L2: the formula
of reciprocity, as it is well-known, results in the formula of Parseval-Plancherel.

Example 2. Let E = D ′(X), the space of distributions on an open subset X
of Rn. Let H be a Hilbert subspace of D ′(X), with kernel Hx,ξ ∈ D ′(X ×X).
Let p be an infinitely differentiable complex function on X. The image pH of
H under multiplication by p has kernel p(x)p̄(ξ)Hx,ξ, defining the map φ 7→
p(H · p̄φ) from D into D ′.

Indeed, the transpose of multiplication by p is multiplication by p, so its
adjoint is multiplication by p̄; the kernel of pH is thus φ 7→ p(H · p̄φ) by
Proposition 21. This can also be written as φ 7→ p(x)

∫
X
Hx,ξp(ξ)φ(xi)dξ, so it

is defined by the distribution p(x)p(ξ)Hx,ξ.

Example 3. Let us go back to the situation of Example 2. Let Dp be a
partial derivative of index p = (p1, p2, ..., pn). (No relation between this p
and the preceding one!) Its transpose and its adjoint are equal to (−1)|p|Dp.
The image DpH of H under Dp has kernel φ 7→ (−1)|p|Dp(H · Dpφ) =
(1)|p|Dp

x

∫
X
Hx,ξD

p
ξφ(ξ)dξ, defined by the distribution Dp

xD
p
ξHx,ξ.

More generally, if D is a differential operator with C∞ coefficients, of the
form

(8.4b) DT =
∑
|p|5m

ap(x)DpTx,

its conjugate, its transpose and its adjoint are given by

D̄T =
∑
|p|5m

apD
pT

tDT =
∑
|p|5m

(−1)|p|Dp(apT )

D∗T =
∑
|p|5m

(−1)|p|Dp(āpT ).

(8.4c)

Then the imageDH of H underD has its kernel defined by φ 7→ D(H ·D∗φ)
so by the distribution DxD̄ξHx,ξ.

If we apply Corollary 2 below, we have DH = 0 if and only if DxHx,ξ = 0
or D̄ξHx,ξ = 0.
(43)See Schwartz [1], Chapter VII.
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Corollary 1. Let M be a Hilbert subspace of F , with kernel M . For u(H ) ⊂
M (resp. u(H ) ⊃ M ) to hold, it is necessary and sufficient that a constant
c = 0 exists such that

(8.5) uHu∗ 5 cM (resp. M 5 cuHu∗).

It suffices to apply Proposition 15.

Corollary 2. We have u(H ) = {0} (or H ⊂ u−1({0})) if and only if uH = 0
(or Hu∗ = 0).

Indeed, u(H ) = 0 is equivalent to K = {0}, where K is the orthogonal
complement of N in H . As Hu∗(F̄ ′) is dense in K this is equivalent to
Hu∗ = 0, or uH = 0 by passing to adjoints H∗ = H.

Corollary 3. Let G be a dense vector subspace of E, equipped with a locally
convex, quasi-complete topology such that the inclusion u of G in E is weakly
continuous. Then E′ is identified with a weakly dense subspace of G′, with a
weakly continuous inclusion u∗. For a Hilbert subspace H of E to be a Hilbert
subspace of G, it is necessary and sufficient that its kernel H relative to E
extends to a weakly continuous linear map Ĥ = 0 from G′ into G. It is not
necessary to assume that Ĥ = 0 if every point of G′ is weakly adherent to a
G′-bounded subset of E′ (which always holds if G is a reflexive Banach space).

Proof. Since u is injective, u∗(Ē′) is weakly dense in G′, and, since u(G) is
dense in E, u∗ is injective; so u∗ is a weakly continuous injection allowing to
identify Ē′ with a weakly dense subspace of Ḡ′. It is then equivalent to saying
that H extends to a non-negative kernel Ĥ : Ḡ′ → G, that is to say, that
H = uHu∗ : Ē′

u∗→ Ḡ′
H→ G

u→ E, or to saying that H = u(L ) = L , L being
the Hilbert subspace of G with kernel H.

Let us now suppose that H extends to a kernel Ĥ : Ḡ′ → G, but that we do
not know that Ĥ = 0. On the other hand, we suppose that every point g′ of G′
is weakly adherent to a G′-bounded subset Ag′ in E′; we have to show that H
is again a Hilbert subspace of G. Let H0 = H(Ē′) ⊂ G. Let us show that the
inclusion of H0 in G is continuous. Let B0 = {Hē′; e′ ∈ E′, 〈Hē′, e′〉 5 1} be
the unit ball of H0; we have to show that B0 is weakly bounded in G, in other
words, that, for every g′ ∈ G′:

(8.6) sup
e′∈E′,〈Hē′,e′〉51

∣∣〈Hē′, g′〉∣∣ < +∞.

As g′ is weakly adherent to Ag′ , and Hē′ ∈ G, we have

(8.7) |〈Hē′, g′〉| 5 sup
f∈Ag′

∣∣〈Hē′, f ′〉∣∣ 5 〈Hē′, e′〉1/2 sup
f ′∈Ag′

〈
Hf̄ ′, f ′

〉1/2
such that in the end, it suffices to show that, for every g′ ∈ G′:

(8.8) sup
f ′∈Ag′

〈Hf̄ ′, f ′〉 < +∞;

which is evident since f ′ ranges over Ag′ , bounded in G′, and since Hf̄ ′ ranges
over Ĥ(Āg′), bounded in G. Then the inclusion of H0 in E factorises into
continuous inclusions H0 → G→ E; by extending to quasi-completions, Ĥ0 →
E factorises into Ĥ0 → G → E, and H , the image of Ĥ0 in E, is a Hilbert
subspace of G.
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The condition pertaining to G′ and E′ always holds if G is a reflexive Banach
space, or more generally the dual of a reflexive Fréchet space. This is because
G′ with the strong topology is a Fréchet space with dual G, E′ is strongly dense
in G′ and every point of G′ is the limit in G′ of a sequence of elements of E′.

Remark 1. In fact, if we know that Ĥ = 0, there is a trivial direct proof for
Corollary 3. If H ⊂ E is a Hilbert subspace of G, it has a kernel Ĥ : Ḡ′ → G;
the characteristic relationship (4.2) shows that its kernel H : Ē′ → E is the
restriction of Ĥ. Conversely, if H is a Hilbert subspace of E, and if its kernel
H : Ē′ → E extends to a non-negative kernel Ĥ : Ḡ′ → G, then Ĥ is the
kernel relative to G of a Hilbert subspace L of G; the kernel of L in E is the
restriction of Ĥ, by the preceding assertion, so it is H, and therefore L = H ,
which is thus a Hilbert subspace of G.

Remark 2. We distinguished H and its extension Ĥ. In practice, we generally
also denote the extension to Ḡ′ → G by H.

Example. Let H be a Hilbert subspace of D ′, the space of distributions on Rn.
Its kernel Hx,ξ is a distribution on Rn×Rn (Example 3, page 24). For H to be
a Hilbert subspace of one of the spaces E = D ,E ′,E ,S ′,S ,O ′M ,OM ,O

′
C ,OC ,

it is necessary and sufficient that Hx,ξ belongs to Ex⊗̂εEξ and is non-negative
in this space; but this non-negativity is automatic, by the criterion of Corollary
3, because every element T of E′ is adherent to an E′-bounded subset of D . [Let
αv, v = 1, 2, ... be a sequence of functions of D having the following property:
for every p, Dp(αv−1) converges to 0 uniformly on every compact subset of Rn
as v → +∞, while staying bounded in Rn. Let ρµ be a sequence of non-negative
functions in D , with supports converging to the origin, with

∫
ρµ = 1. Then,

in E′, T = limµ→∞(limv→∞ αv(ρµ ∗ T )), and the set of the αv(ρµ ∗ T ) ∈ D is
bounded in E′].

Corollary 4. The map H → u(H ) of Hilb(E) into Hilb(F ), defined by a
continuous linear or antilinear map u from E into F , is a homomorphism with
respect to multiplication by non-negative real numbers, addition and the order
relation:

u(λH ) = λu(H );

u(H1 + H2) = u(H1) + u(H2);

H1 5H2 =⇒ u(H1) 5 u(H2).

(8.9)

Proof. It is easy to see directly but even easier by noticing that H → uHu∗ is
a homomorphism with respect to the corresponding structures of L +(E) and
L +(F ).

Corollary 5. Let E be a Hilbert space, H a Hilbert subspace of E and H its
kernel E →H (Example 4, page 25). Then H is the image

√
HE of E under√

H.

Proof.
√
H is its own adjoint. The kernel of E in itself being the identity I,

that of
√
HE is, according to Proposition 21,

√
HI
√
H = H; we thus have√

HE = H .

This gives, in the case where E is Hilbert, a direct construction of H from
H. H is the set of the

√
Hξ, ξ ∈ E, and we have

(8.9b) ‖η‖H = inf√
Hξ=η

‖ξ‖ .
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Transport of structure.

Let u be a weak isomorphism (resp. anti-isomorphism) from E onto F . It
automatically defines, by transport (resp. anti-transport) of structure:

a) a weak isomorphism (resp. anti-isomorphism) from Ē onto F̄ , which is
nothing but ū, but which we will also denote by u; so that uē = ue.

b) a weak isomorphism (resp. anti-isomorphism) from Ē′ onto F̄ ′, which is
nothing but (u∗)−1, but which we will also denote by u:

(8.10) 〈uē′, uē〉 = 〈ē′, ē′〉 (resp. 〈ē′ē〉);

c) an isomorphism (resp. anti-isomorphism) from L (Ē′;E) onto L (F̄ ′;F )
equipped with the topology of weak pointwise convergence, which is noth-
ing but H 7→ uHu∗, but which we will denote again by u : H 7→ u(H)

(8.11) u(H)(u(ē′)) = u(Hē′).

Finally, if H is a Hilbert subspace of E, u(H ) is a Hilbert subspace of F
defined as the image of H under u with the transport (resp. anti-transport) of
the scalar product:

(8.12) (uk | uk)u(H ) = (h | k)H (resp. (h | k)H )

‖uh‖u(H ) = ‖h‖H .

Then, as a result of the intrinsic character of the definition of the kernel H of
a Hilbert subspace H of E, the transport of structure shows that the kernel of
u(H ) in u(F ) is u(H); it is a particular case of Proposition 21, since u(H) =
uHu∗.

Let us suppose, for example, that F = E, with u being the conjugation.
Then F̄ = E, with the reciprocal map of the conjugation. We have: ue = ē,
uē = e, ue′ = ē′ and uē′ = e′; finally, (8.11) gives u(H) · e′ = Hē′ = H̄e′ or
u(H) = H̄. If then H is a Hilbert subspace of E, with kernel H, its conjugate
H̄ (with the transport of the norm) has kernel H̄.

Invariance under an automorphism. If, in particular, F = E, u becomes
a weak automorphism (resp. anti-automorphism) of E. We will say that H is
invariant under u if u(H ) = H ; this means that u is a unitary (resp. anti-
unitary) operator of H ; for it to be so, it is necessary and sufficient that the
kernel H is invariant under u, that is to say, u(H) = H, or uHu∗ = H, or
uHu−1 = H, or uH = Hu (as a map from Ē′ into E). If we suppose that u
ranges over a group G of weak automorphisms of E, and if H is invariant un-
der G, we have a unitary representation of G in H ; the invariant kernels under
G form a convex sub-cone of L +(Ē′, E), closed with respect to the topology
of weak pointwise convergence. These are some properties that we have sys-
tematically applied in the study of elementary relativistic particles in quantum
mechanics (related to some irreducible unitary representations of the inhomo-
geneous Lorentz group). In the same vein, let us suppose that E is equipped
with an anti-involution. Then a Hilbert subspace H of E is invariant under
this anti-involution (H̄ = H , with the transport of norms), if and only if H is
invariant, H̄ = H.
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Multiplication of measures spaces.

Proposition 22. Let µ be a non-negative Radon measure on a locally compact
space X, and let p be a locally square-µ-integrable complex function. Then the
image pΛ2(X,µ) of Λ2(X,µ) under multiplication by p is Λ2(X, |p|2µ), and its
kernel in D ′0c (X) (the space of measures on X) is φ 7→ φ|p|2µ. If p is every-
where 6= 0, multiplication by p is an isometry from Λ2(X,µ) onto Λ2(X, |p|2µ);
moreover, this latter is the space of measures of the form hµ, h/p ∈ L2(X,µ),
with

(8.13) ‖hµ‖Λ2(X,|p|2µ) =

∥∥∥∥hp
∥∥∥∥
L2(X,µ)

.

Proof. We cannot use Example 2 on page 43, because p does not operate by
multiplication on D ′0(X), as it is not necessarily continuous.

1◦) Let σ be a measure in Λ2(X,µ); σ = fµ, f ∈ L2(X,µ) and

(8.14) ‖σ‖Λ2(X,µ) = ‖f‖L2(X,µ) .

As p and f are locally square-µ-integrable, pf is locally µ-integrable, so
τ = pσ = pfµ is a measure. Let us denote by g a µ-measurable function
such that pf = g|p|2; g is well-defined on a set Y = {x ∈ X, p(x) 6= 0},
and is set to be any arbitrary measurable function on the complement Y c.
We see that g is square-|p|2µ-integrable:

‖f‖2L2(X,µ) =

∫
X

|f |2 dµ =
∫
Y

|f |2 dµ

=

∫
Y

|g|2 |p|2 dµ =

∫
X

|g|2 |p|2 dµ = ‖g‖2L2(X,|p|2µ) .

(8.15)

As τ = g(|g|2µ), we have pσ = t ∈ Λ2(X, |p|2µ). (8.15) then gives:

(8.16) ‖pσ‖Λ2(X,|p|2µ) 5 ‖σ‖Λ2(Xµ) .

2◦) Conversely, let τ ∈ Λ2(X, |p|2µ); we have

τ = g|p|2µ,

and

(8.17) ‖τ‖Λ2(X,|p|2µ) = ‖g‖L2(X,|p|2µ) .

We can find some µ-measurable functions f such that pf = g|p|2; they
are well-defined on Y , and (measurably) arbitrary on the complement Y c.
Then, for each of these f ,

∫
Y
|f |2dµ < +∞; if we choose f on Y c such

that
∫
X
|f |2dµ < +∞, we will have σ = fµ ∈ Λ2(X,µ), and τ = pσ. So

we have τ ∈ pΛ2(X,µ). Moreover, the inequality (8.15) is an equality if
we choose f = 0 on Y c. (8.15) then becomes

(8.18) ‖τ‖Λ2(X,|p|2µ) = inf
pσ=τ

‖σ‖Λ2(X,µ) .

1◦) and 2◦) show that pΛ2(X,µ) = Λ2(X, |p|2µ).
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3◦) We can reprove it using Proposition 21. The map σ 7→ pσ is continuous
and linear from Λ2(X,µ) into D ′0c (X). To see it, it suffices to show that
it is weakly continuous; but, if fµ converges weakly to 0 in Λ2(X,µ), pfµ
converges weakly to 0 in D ′0(X), because of

(8.19) 〈pfµ, φ〉D′0,D = 〈fµ, pφµ〉Λ2(µ),(Λ2(µ))′ =

∫
X

fpφdµ.

(Equation (1.2d)).

This proves at the same time that the transpose of the map fµ 7→ pfµ
from Λ2(X,µ) into D ′0c (X) is the map φ 7→ pφµ from D0(X) into Λ2(X,µ),
identified with its dual. Then the adjoint of f(µ) 7→ pfµ is φ̄ 7→ p̄φ̄µ or
φ 7→ p̄φµ.

Let us then apply Proposition 21. The kernel of Λ2(X,µ) relative to itself
is the identity (by identifying (Λ2)′ with Λ2). So the kernel of the image
pΛ2(X,µ) in D ′0c (X) is φ 7→ pp̄φµ = |p|2φµ. It is also the kernel of
Λ2(X, |p|2µ) (Example 1c on page 23), which indeed shows that these two
spaces are identical.

4◦) The results in the case where p is everywhere 6= 0 are obvious, because
(8.15) becomes an equality. For τ ∈ pΛ2(X,µ), τ = pσ = pfµ, we set
τ = hµ, h = pf , and we have h/p = f ∈ L2(X,µ) and vice versa;
moreover,

(8.20) ‖τ‖pΛ2(X,µ) = ‖σ‖Λ2(Xµ) = ‖f‖L2(X,µ) =
∥∥h/p∥∥

L2(X,µ)

which is (8.16).

Remark. If X is an open subset of Rn, and if dµ = dx, we generally identify f
with fdx, and L2(X, dx) with Λ2(X, dx). Then pL2 is the space Λ2(X, |p|2dx),
and its kernel in D ′(X) is φ 7→ |pr|2φ (as a linear map from D into D ′). If p is
everywhere 6= 0, pL2 is the space of the functions h such that h

p ∈ L
2, with

(8.21) ‖h‖pL2 =

∥∥∥∥hp
∥∥∥∥
L2

.

Expressing inclusion relations by upper bounds.

Let H and K be Hilbert subspaces of E. The inclusion relation H 5 K
(which means, as we have seen on page 15, that H ⊂ K and that the unit ball
of H is contained in the unit ball of K ) is expressed, according to Proposition
13, by the inequality between kernels H 5 K, or equivalently: for every e′ ∈ E′,
〈Hē′, e′〉 5 〈Kē′, e′〉. Now let u and v weakly continuous maps from E into E;
u∗ and v∗ are then weakly continuous from Ē′ into Ē′.

The inclusion relation u(H ) 5 v(K ), which expresses that u(H ) ⊂ v(K )
and that the image under u of the unit ball of H is contained in the image under
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v of the unit ball of K , will be expressed by the inequality between kernels:

(8.22)


uHu∗ 5 vKv∗, or equivalently, for every e′ ∈ E′,
〈uHu∗ē′, e′〉 5 〈vKv∗e′, e′〉, or
(Hu∗ē′ | u∗ē′)E,Ē′ 5 (Kv∗ē′ | v∗ē′)E,Ē′ or, by (4.3):∥∥Hu∗ē′∥∥

H
5
∥∥Kv∗ē′∥∥

K
.

It is convenient to let u and v step in, instead of u∗ and v∗; so we use (4.7),
which gives:

(8.23)
∥∥Hu∗ē′∥∥

H
= sup
f ′∈E′

∣∣〈Hu∗ē′, f ′〉∣∣
〈Hf̄ ′, f ′〉1/2

= sup
f ′∈E′

∣∣〈uHf̄ ′, e′〉∣∣
〈Hf̄ ′, f ′〉1/2

so that we will have u(H ) 5 v(K ), if and only if, for every e ∈ E′:

(8.24) sup
f ′∈E′

∣∣〈uHf̄ ′, e′〉∣∣
〈Hf̄ ′, f ′〉1/2

5 sup
f ′∈E′

∣∣〈vKf̄ ′, e′〉∣∣
〈Kē′, e′〉1/2

.

We will restrict ourselves to v = identity; then it is in our interests to keep the
right-hand side under the form ‖Kē′‖K = 〈Kē′, e′〉1/2.

But we will successively consider 5 and =. So:

Proposition 22b. Let H and K be two Hilbert subspaces of E, and let u be
a continuous linear map from E into E.

1◦) The necessary and sufficient condition for u(H ) 5 K is that, for any
e′, f ′ ∈ E′, we have:

(8.25)
∣∣〈uHf̄ ′, e′〉E,E′∣∣ 5 〈Hf̄ ′, f ′〉1/2〈Kē′, e′〉1/2.

This condition is verified if, for every e′ ∈ E′, we have:

(8.26)
∣∣〈uHē′, e′〉E,E′ ∣∣ 5 1

2
〈Hē′, e′〉1/2〈Kē′, e′〉1/2.

2◦) The necessary and sufficient condition for u(H ) = K is that, for every
e′ ∈ E′, we have

(8.27) sup
f ′∈E′

∣∣〈uHf̄ ′, e′〉E,E′ ∣∣
〈Hf̄ ′, f ′〉1/2

= 〈Kē′, e′〉1/2.

This condition is verified if, for any e′ ∈ E′, we have:

(8.28)
∣∣〈uHē′, e′〉E,E′ ∣∣ = 〈Hē′, e′〉1/2〈Kē′, e′〉1/2.

Everything results from the preceding arguments; the implication (8.28) =⇒
(8.27) is trivial, while (8.26) =⇒ (8.25) was seen on page 30.

The relationship (8.28), in general replaced by the even stronger relationship:

(8.29) Re〈uHē′, e′〉E,E′ = 〈Hē′, e′〉1/2〈Kē′, e′〉1/2,

is of a type known under the name of coercivity relation.
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The functors Hilb and L + and their isomorphism

A convex cone refers to a set Γ, equipped with the following structures:

1◦) a law of multiplication by non-negative scalars: (λ, ξ) 7→ λξ, a map from
R+ × Γ into Γ, with the properties: 1ξ = ξ, (λµ)ξ = λ(µξ).

2◦) an addition law, (ξ, η) 7→ ξ + η, a map from Γ × Γ into Γ, which is
associative, commutative and equipped with a neutral element 0.

We assume moreover that these two laws are connected by the following prop-
erties: (λ+ µ)ξ = λξ + µξ, λ(ξ + η) = λξ + λη (distributivity of multiplication
with respect to addition) and 0ξ = λ0 = 0.

We say that the cone is salient, or strictly convex, if ξ + η = 0 implies
ξ = η = 0. We say that it is regular if ξ + ζ = η + ζ implies ξ = η. A
convex salient cone of a vector space over R (see page 16) satisfies all of these
properties; and it is essentially the only case, because we can associate, uniquely
up to isomorphism, a vector space G to any regular salient convex cone Γ, such
that Γ is a salient convex cone of G and generates G (an element of G is an
equivalence class of Γ × Γ, with (ξ, ξ′) ∼ (η, η′) if ξ + η′ = ξ′ + η; the class of
(ξ, ξ′) becomes the difference ξ − ξ′ in the vector space G).

On a salient convex cone Γ, we canonically define an order relation by ξ 5 η
if there exists ζ ∈ Γ (necessarily unique) such that η = ξ + ζ. Then, ξ 5 ξ′ and
η 5 η′ imply ξ + η 5 ξ′ + η′, ξ 5 η is equivalent to ξ + ζ 5 η + ζ, ξ 5 η implies
λξ 5 λη and, for ξ 6= 0, λξ 5 ξ is equivalent to λ 5 1.

If G is a vector space generated by Γ, G is an ordered vector space, where Γ
is the cone of non-negative elements.

Let E be the category of locally convex, quasi-complete Hausdorff topological
vector spaces on C, the morphisms being the continuous linear maps. Let G
be the category of regular salient convex cones, with the morphisms being the
maps that preserve multiplication by non-negative scalars and addition, and so
the order relation as well.

Then Hilb : E 7→ Hilb(E) is a covariant functor from the category E into
the category G , if we associate the morphism H 7→ u(H ) : Hilb(E)→ Hilb(F )
to a morphism u : E → F .

Furthermore, L + : E → L +(E) = L +(Ē′;E) is another covariant functor
from the category E into the category G , if we associate the morphism H 7→
uHu∗ : L +(E)→ L +(F ) to a morphism u : E → F .

Finally, the different Propositions of the preceding subsections show that
these two functors Hilb and L + are isomorphic, the isomorphism being the
canonical map Hilb(E)→ L +(E), for E ∈ E .

We can naturally introduce the vector space generated by Hilb(E) (set of
classes of formal differences of Hilbert subspaces of E); it is isomorphic to vector
subspaces (over R) of L (Ē′;E) generated by positive kernels. We will study it
later (§12).

§9. Spaces of functions on a set X. Reproducing kernel of
Aronszajn-Bergman

Let X be a set, and E = CX the space of complex functions on X, equipped
with the topology of pointwise convergence. The dual E′ = (CX)′ is the space of
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measures with finite support on X; such a measure is of the form µ =
∑
x∈X

cxδ(x)

where δ(x) is the Dirac measure of the point x, and where cx ∈ C, except a finite
number of them, are zero; we have, for f ∈ CX :

(9.1) 〈µ, f〉 =
∑

cxf(x).

Let γ be a linear form on (CX)′; we can let g(x) = 〈γ, δ(x)〉, and then g is a
function on X, so an element of CX , and we have 〈γ, µ〉 =

∑
x∈X

cxg(x) = 〈µ, g〉

if µ =
∑
x∈X

cxδ(x). Thus every linear form on E′ is weakly continuous and

consequently so is every linear map from E′ into a topological vector space.
Naturally E and E′ are equipped with contragredient anti-involutions, de-

fined by the complex conjugation f 7→ f̄ and µ 7→ µ̄.

Proposition 23. Let H be a kernel relative to E = CX ; the associated repro-
ducing kernel A is the function on X ×X defined by

(9.2) A(x, ξ) = 〈Hδ(ξ); δ(x)〉, x ∈ X, ξ ∈ X.

Then H 7→ A is an isomorphism of the space L (Ē′;E) of the kernels relative
to E, equipped with the topology of weak pointwise convergence, onto the space
CX×X of complex functions on X ×X, equipped with the topology of pointwise
convergence. H is defined from A by

(9.3)


〈Hv̄, µ〉 =

∑
(x,ξ)∈X×X

cxd̄ξA(x, ξ)

for µ =
∑
x∈X

cxδ(x), v =
∑
ξ∈X dξδ(ξ);

Hv is the function x 7→
∑
ξ∈X

dξA(x, ξ); in particular, Hδ(ξ) is the function

A(, ξ) : x 7→ A(x, ξ); and the reproducing kernel associated to H∗ is the sym-
metric conjugate sA defined by:

(9.4) sA(x, ξ) = A(ξ, x);

H is Hermitian (i.e. H∗ = H) if and only if sA = A or

(9.5) A(x, ξ) = A(ξ, x).

H = 0 if and only if A is “of positive type”:

(9.6) ∀µ =
∑
x∈X

cxδ(x),
∑
x,ξ

cxc̄ξA(x, ξ) = 0.

Proof. This Proposition is evident. (9.2) defines A from H; and what follows
defines H from A, and H is certainly weakly continuous following what was
said before the statement of the Proposition. (9.4) is obvious from (9.2), and
hence so is (9.5). (9.6) precisely translates the non-negativity of H: ∀µ ∈ (CX)′,
〈Hµ̄, µ〉 = 0.
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Corollary. There exists an isomorphism between the set H (CX) of the Hilbert
subspaces of CX (equipped with the structures defined in §2) and the salient
convex cone of CX×X consisting of functions of positive type. The function A
on X ×X associated to the Hilbert subspace H of CX is characterised by:

(9.10) ∀h ∈H ,∀x ∈ X, (h | A(, x))H = h(x).

In particular:

(9.11)

{
∀x ∈ X,∀ξ ∈ X, (A(, ξ) | A(, x))H = A(x, ξ)

‖A(, x)‖2H = A(x, x); and

(9.11b)
∣∣h(x)

∣∣ 5 ‖h‖ (A(x, x))1/2.

Proof. (9.10) is (4.2) applied to e′ = δ(x); and conversely, from (9.10), we deduce
(4.2) by taking the combination e′ = µ =

∑
x∈X

cxδ(x). From (9.10) we deduce

(9.11) by taking h = A(, ξ). (9.11b) is the Cauchy-Schwarz inequality applied
to (9.10) taking into account (9.11).

It is Bergman who has first introduced the kernel A, notably in the theory
of analytic and harmonic functions; Aronszajn studied it in all its generality
for all Hilbert spaces of functions on a set X. He called A the reproducing
kernel, because of (9.10). He proved the above Corollary, that is to say, the
isomorphism theorem of §6 for the particular case E = CX . This case E = CX
is clearly much more specific than ours. But as every locally convex vector space
E is a subspace of the space CE′ of complex functions on E′ and has a finer
topology than that of pointwise convergence on E′ (which is the weak topology
of E), every Hilbert subspace H of E is a fortiori a Hilbert subspace of CE′ ! We
could thus, in this manner, deduce many of the preceding Propositions (notably
the isomorphism theorem) from that of Aronszajn, arriving at a complement
allowing to pass from CE′ to the subspace E (and inevitably having to use the
quasi-complete character of E). This complement is, essentially, Proposition
0: every Hilbert subspace of CE′ having a dense subspace in E is a Hilbert
subspace of E. We could thus have shortened the exposition by assuming the
theory of Bergman-Aronszajn to be known and by applying it as it is. The
reason we have not done that is because the results are just as easy, often even
easier to show directly for any E, than for the particular case E = CX . The
non-negativity 〈He′, e′〉 = 0 is simpler than

∑
cxc̄ξA(x, ξ) = 0.

Proposition 24. Let X be a locally compact topological space. Let E 0(X) ⊂ CX
be the space of continuous complex functions on X, equipped with the topology
of uniform convergence on all compact subsets; its dual E ′0(X) is the space of
Radon measures with compact support on X. Let H be a Hilbert subspace of
CX , and A its reproducing kernel of Aronszajn. For H to be a Hilbert subspace
of E 0(X), it is necessary and sufficient that A is separately continuous on X×X,
and locally bounded. In this case, its kernel H relative to E ′0(X) is defined as
follows: if ν ∈ E ′0(X), Hν is the continuous function

(9.12) (Hν)(x) =

∫
X

A(x, ξ)dν(ξ);
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moreover:

〈Hν̄, µ〉 =

∫
X

dµ(x)

∫
X

A(x, ξ)dν̄(ξ)(9.13)

=

∫
X

dν̄(ξ)

∫
X

A(x, ξ)dµ(x), and

〈Hµ̄, µ〉 =

∫
X

dµ(x)

∫
X

A(x, ξ)dµ(ξ) = 0.(9.14)

For the inclusion of H in E 0(X) to be compact, it is necessary for A to be
a continuous function on X × X, and it is sufficient for it to be separately
continuous, and continuous on the diagonal of X ×X.

Proof. 1◦) Let us suppose that H is a Hilbert subspace of E 0(X); let H be
its kernel relative to E 0(X), and A its reproducing kernel, as a Hilbert
subspace of CX . The map x 7→ δ(x) is continuous from X into E ′0(X) with
respect to the weak topology; since then the sesquilinear form H̃ defined
by H (Equation (3.5), Proposition 5) is separately weakly continuous,
A defined by (9.2) is separately continuous on X × X (we can also say:
A(·, ξ) ∈ H so A(·, ξ) ∈ E 0(X), so x 7→ A(x, ξ) is continuous; likewise
ξ 7→ A(ξ, x) = A(x, ξ)). If (x, ξ) ∈ K × K, with K a compact subset
of X, δ(x) ranges over a weakly compact, and hence bounded, subset of
E ′0(X), and Hδ(ξ) ranges over a weakly compact, and hence bounded,
subset of E 0(X), so A(x, ξ) = 〈Hδ(ξ), δ(x)〉 is bounded on K × K: A is
locally bounded on X ×X.

2◦) Conversely, let H be a Hilbert subspace of CX , and A its reproducing
kernel of Aronszajn, and let us suppose that A is separately continuous and
locally bounded. Let us suppose that x ∈ X converges to x0 ∈ X while
staying in a compact set; then ‖A(·, x)‖2H = A(x, x) stays bounded, and
(A(·, ξ) | A(·, x))H = A(x, ξ) converges to A(x0, ξ) = (A(·, ξ) | A(·, x0));
but the A(·, ξ), ξ ∈ X, form a total set in H (since the Hµ, µ ∈ (CX)′,
which are finite linear combinations of these, form the dense subspace
H((CX)′) = H0 of Proposition 7); so A(·, x) converges to A(·, x0) weakly
in H (44). Then, for h ∈ H , (h | A(·, x))H = h(x) will converge to
(h | A(·, x0)) = h(x0), so each h is a continuous function on X. So
H ∈ E 0(X), and the closed graph theorem(45) shows that its inclusion is
continuous, and hence that it is a Hilbert subspace of E 0(X).

3◦) Let us suppose that the preceding properties are satisfied. We have, for ν
in E ′0(X):

(9.15) ν =

∫
X

δ(ξ)dν(ξ),

because this simply expresses that, for every f ∈ E 0(X), we have:

(9.16) 〈ν, f〉 =

∫
f(ξ)dν(ξ).

(44)In accordance with Ascoli’s theorem (Bourbaki [1], Chapter III, §3, no5, Proposition 5).
(45)Bourbaki [1], Chapter I, §3, no3, Corollary 5 of Theorem 1.
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As ν → Hν(x) = 〈Hν, δ(x)〉 is a continuous linear form on E ′0(X) with
the weak topology, we deduce from (9.15) that:

(9.17) (Hν)(x) =

∫
X

〈Hδ(ξ), δ(x)〉dν(ξ) =

∫
X

A(x, ξ)dν(ξ),

which is (9.12); the last term is the integral of a continuous function with
respect to a Radon measure with compact support; moreover, the obtained
result, which is (Hν)(x), is necessarily a continuous function of x ∈ X.

Then we will have, by integrating with respect to µ the continuous function
Hν̄

(9.18) 〈Hν̄, µ〉 =

∫
((Hν̄)(x))dµ(x) =

∫
X

dµ(x)

∫
X

A(x, ξ)dν(ξ),

which is the first equality of (9.13).

In addition, Hδ(ξ) = A(·, ξ), so

(9.19) 〈Hδ(ξ), µ〉 =

∫
A(x, ξ)dµ(x);

as ν → 〈Hν̄, µ〉 is continuous and linear on E ′0(X) with the weak topology,
we deduce from (9.15) that:

〈Hv̄, µ〉 =

∫
X

〈Hδ(ξ), µ〉dν(ξ)

=

∫
X

dν(ξ)

∫
X

A(x, ξ)dµ(x),

which is the second equality of (9.13).

By setting ν = µ, we obtain (9.14), which is by no means evident a priori
if we only suppose A to be separately continuous, locally bounded and of
positive type. Naturally, we would see it directly by the application of the
criterion of Corollary 3 of Proposition 21: every measure µ of E ′0(X) is
a weak limit of finite combinations of point masses, in other words, it is
an element of (CX)′, with supports contained in that of µ and with norm
5 ‖µ‖, so forming a bounded subset of E ′0(X).

4◦) According to Proposition 9c, H has a compact inclusion in E ′0(X) if and
only if, as a bilinear form on E ′0(X)× E ′0(X) (let us recall that E ′0 is its
own conjugate space), H belongs to E 0(X) “⊗εE 0(X). But this space can
be identified with E 0(X ×X), and the continuous function thus identified
with H is precisely A. It remains for us to see that, A being separately
continuous and of positive type, its continuity on the diagonal X × X
implies its continuity on X ×X. Now, first of all it is locally bounded on
the diagonal, hence locally bounded on X × X, by the Cauchy-Schwarz
inequality |A(x, ξ)| 5 (A(x, x))1/2(A(ξ, ξ))1/2. Then, when ξ converges to
ξ0, A(·, ξ) converges weakly to A(·, ξ0) in H , but with the convergence of
the norm (A(ξ, ξ))1/2 to the norm (A(ξ0, ξ0))1/2, hence A(·, ξ) converges
strongly to A(·, ξ0) in H and consequently in E 0, which expresses exactly
that A is continuous on X ×X.
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Corollary 1. If a sum of functions of positive type on X × X is separately
continuous and locally bounded (resp. continuous), each of the functions is also
locally bounded (resp. continuous).

This is because if a sum of Hilbert subspaces H of CX is a Hilbert subspace
of E 0(X) (resp. has a compact inclusion in E 0(X)), each of the subspaces is also
a Hilbert subspace of E 0(X) (resp. has a compact inclusion in E 0(X)), with the
inclusion Hi →

∑
j

Hj being continuous. We could develop analogous corollaries

to the following propositions; we leave it to the reader to do that: If A is a
locally convex quasi-complete subspace of CX , with a continuous inclusion, and
if a sum of functions of positive type on X ×X belongs to L +(A ), the same
holds for each of the functions in the sum.

Remark. It is not certain that we can replace (9.13) by a double integral, be-
cause A, separately continuous and locally bounded, is not necessarily integrable
nor even measurable with respect to the product measure dµ(x)dν(ξ). The fact
that the integrals (9.13) make sense and are equal is not obvious a priori, and
perhaps comes from the fact that A is of positive type.

But let us suppose that X is metrisable on all of its compact subsets, and
hence separable on all of its compact subsets. Then the space C (K) of continu-
ous functions on a compact subset K of X is also separable. Let A be any func-
tion onX×X, separately continuous and locally bounded. The map x 7→ A(x, ·)
from K into C (K) with the weak topology is continuous [indeed, when x tends
to x0, A(x, ·) converges pointwise to A(x0, ·) and stays bounded on K, so that,
as K is metrisable, the dominated convergence theorem of Lebesgue shows that,
for every Radon measure ν on K, 〈A(x, ·), ν〉 converges to 〈A(x0, ·), ν〉, so A(x, ·)
converges weakly to A(x0, ·) in C (K)]. Then let θ be a non-negative Radon mea-
sure on K × K, and θ̃ its image on K under the projection (x, ξ) 7→ x. The
map x 7→ A(x, ·) is a fortiori weakly measurable with respect to θ̃, so strongly
measurable since C (K) is a separable Banach space. This proves that, for any
δ > 0, there exists a compact subset Kδ of K such that θ(K − Kδ) 5 δ and
such that x 7→ A(x, ·) is continuous from Kδ into C(K). Then (x, ξ) 7→ A(x, ξ)
is continuous on Kδ × K; and θ((K × K) − (Kδ × K)) = θ̃(K − Kδ) 5 δ; as
δ is arbitrary, this proves that A is θ-measurable on K × K; as K and θ are
arbitrary, this proves that A is measurable with respect to every Radon measure
on X ×X.

We have used the fact that A was separately continuous and locally bounded,
but only the first hypothesis is necessary to obtain the measurability of A;
indeed, it implies that, for every integer n = 0, inf(n, sup(−n,ReA)), separately
continuous and bounded, is measurable, hence so are ReA and Im(A) by passing
to the limit, and hence A is separately continuous and bounded.

We then see that A is integrable with respect to dµ(x)dν̄(ξ); the integrals
(9.13) can be written as

(9.21)
∫ ∫

X×X
A(x, ξ)dµ(x)dν(ξ)

and are a priori equal by Fubini.
What’s more, according to the two expressions on the right-hand side of

(9.13), we see that they define a separately weakly continuous sesquilinear form
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on E ′0(X)× E ′0(X); so H defined by (9.12) is weakly continuous from E ′0(X)
into E 0(X). The hypothesis of local metrisability of X thus removes all myste-
riousness of the obtained results, and makes them decidedly independent of the
fact that A is of positive type.

Let us suppose in particular that X is an open subset of Rn. Then E 0(X) ⊂
D ′(X); so H, the kernel E ′0(X) → E 0(X) of H relative to E 0(X), gives, by
the restriction D(X) → D ′(X), the kernel of H relative to D ′(X) (it will
suffice, in Equations (9.12) to (9.14), to replace dµ(x) and dν(ξ) by φ(x)dx and
ψ(ξ)dξ); this kernel is a distribution Hx,ξ on X ×X (Example 3 on page 24):
this distribution is what is identified with the measurable (with respect to the
Lebesgue measure dxdξ) and locally bounded function A. We can thus restate
Proposition 24 by saying:

Corollary 2. For a Hilbert subspace H of D ′(X), where X is an open subset
of Rn, to be a Hilbert subspace of E 0(X), it is necessary and sufficient that its
kernel Hx,ξ ∈ D ′(X×X) is a separately continuous and locally bounded function
A.

Proof. We just saw that the condition is necessary. It is sufficient according to
Corollary 3 of Proposition 21, applied to E = D ′ and G = E 0 because, if A is
separately continuous and locally bounded, we just saw that H is weakly contin-
uous from E ′0(X) into E 0(X), and it is not necessary to assume its positivity,
because, by regularisation, every µ ∈ E ′0(X) is the weak limit of a sequence
µ ∗ ρν of functions in D(X).

Proposition 25. Let X be an open subset of Rn, and let Em(X) be the space of
functions of class Cm on X, equipped with the topology of uniform convergence
on every compact subset with derivatives of all orders up to and including m
(of all orders if m = ∞, a valid convention for the following). Let H be a
Hilbert subspace of CX , and A its reproducing kernel of Aronszajn. For H
to be a Hilbert subspace of Em(X), it is necessary for A to have separately
continuous and locally bounded derivatives (in the usual sense and in the sense
of distributions) of orders up to and including m in x and of orders up to and

including m in ξ; and it suffices for
∑
|p|=m

Dp
xD

p
ξA, or (

n∑
i=1

∂2

∂xi∂ξi
)mA (in the

sense of distributions) to be a separately continuous and locally bounded function.
In this case, let H be the kernel of H relative to Em(X). For T ∈ E ′m(X)
(distribution of order 5 m), HT is the function of class Cm defined by

(9.21b) (HT )(x) =

∫
X

A(x, ξ)T (ξ)dξ

and its derivatives of orders up to and including m can be calculated by differ-
entiation under the sign

∫
X
. For this T ∈ E ′m(X), we have:

〈HT̄ , S〉 =

∫
X

S(x)dx

∫
X

A(x, ξ)T (ξ)dξ

=

∫
X

T̄ (ξ)dξ

∫
X

A(x, ξ)S(x)dx.

(9.22)

In particular:

(9.23) 〈HT̄ , T 〉 =

∫
X

T (x)dx

∫
X

A(x, ξ)T (ξ)dξ = 0.
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For the inclusion of H in Em(X) to be compact, it is necessary and sufficient
that A has continuous derivatives of order 5 m in x and 5 m in ξ (in the usual
sense or in the sense of distributions) on X ×X.

Proof. Let us first say what we mean by: “A has partial derivatives in the usual
sense of orders 5 m in x and of orders 5 m in ξ”. We mean that we can apply, in
whatever order, partial differentiation with respect to x1, x2, ..., xn, ξ1, ξ2, ..., ξn,
provided that the number of times we differentiate with respect to the xi is
5 m and that the number of times we differentiate with respect to the ξi is
5 m; and moreover that the obtained result is independent of the order of
differentiation(46).

Let us recall that if a function in one variable has a derivative everywhere,
which is a locally integrable function, then it is the indefinite integral of it. We
easily deduce from this that if a locally integrable function onX×X has a partial
derivative ∂

∂xi
or ∂

∂ξi
everywhere, and if this derivative is locally integrable, it is

also the derivative in the sense of distributions(47).
Thus, if A has partial derivatives of order 5 m in x and 5 m in ξ, in the

usual sense, which are separately continuous and locally bounded, these are also
its derivatives in the sense of distributions. Two derivatives differing only by
the order of differentiation are then equal as distributions, so almost everywhere
equal, so everywhere equal by separate continuity.

1◦) Let us suppose that H is a Hilbert subspace of Em(X). Then, for every
x ∈ X, A(·, x) is in Em(X), and thus so is A(x, ·) by Hermitian sym-
metry. Then the right-hand side of (9.21b), for fixed x, makes sense,
and represents a linear form in T , weakly continuous on E ′m. As H is
weakly continuous and linear from E ′m into Em, the left-hand side has
the same properties. They coincide for T = δ(ξ), by the very definition of
the reproducing kernel; the point masses form a weakly total set in E ′m,
so the equality (9.21) is true. The right-hand side is then necessarily a
function in x of class Cm; by applying the distribution S ∈ E ′m to both
sides, we obtain the first equality in (9.22). The second can be deduced
by Hermitian symmetry (and by exchanging x and ξ); from this, (9.23) is
immediate.
This proof is also valid for m = 0, and gives a variant of part 3◦) of the
preceding Proposition.

2◦) Let us assume that H is a Hilbert subspace of Em(X). Let us apply
(9.22) for

S = (Dpδ)(x), T = (Dqδ)(ξ). We obtain:
〈H((Dqδ)(ξ)), (D

pδ)(x)〉
= (−1)|p+q|Dp

xD
q
ξA(x, ξ)

= (−1)|p+q|Dq
xiD

p
xA(x, ξ).

(9.24)

So firstly these two derivatives exist, and Dq
ξA(·, ξ) is of class Cm in x for

fixed ξ, and Dp
xA(x, ·) of class Cm in ξ for fixed x. And then ξ 7→ (Dqδ)(ξ)

(46)Independence of the order of differentiation is not automatic, because we do not assume
the continuity of the considered derivatives on X ×X.
(47)Schwartz [1], Chapter II, Theorem V.
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and x 7→ (Dpδ)(x) are continuous from X into E ′m(X) with the weak
topology; as H̃ is separately weakly continuous on E ′m(X) × E ′m(X),
Dp
xD

q
ξA = Dq

ξD
p
xA is separately continuous. If x and ξ range over compact

subsets of X, (Dpδ)(x) and (Dqδ)(ξ) range over the bounded subsets of
E ′m(X), so Dp

xD
q
ξA(x, ξ) stays bounded; it is locally bounded.

This does not show completely that the derivatives of orders 5 m in x
and 5 m in ξ of A exist (with permutability of order of differentiation);
we only saw that Dp

xD
q
ξA and Dq

ξD
p
xA exist for |p| 5 m, |q| 5 m, and that

they are equal. It is, however, obvious form = 0 (and true also form = 1).
Let us assume that it has been shown for m = 0, 1, 2, ..., l − 1, and let us
show it for m = l. A derivative of order 5 l in x and 5 l in ξ of A is of
the form Dα

xD
β
ξD
′, or Dβ

ξD
α
xD
′, where D′ is a partial derivative of order

5 l− 1 in x and 5 l− 1 in ξ. Let us first consider the case D = Dα
xD

β
ξD
′.

Since H is a Hilbert subspace of E l, it is a fortiori a Hilbert subspace
of E l−1; so, if D′ is of total index p′ in x and of total index q′ in ξ, the
induction hypothesis says that D′A exists, and is also given by Dp′

x D
q′

ξ A

and Dq′

ξ D
p′

x A. Then D
β
ξD
′A exists by the previous results and is given by

Dβ+q′

ξ Dp′

x A; it is thus also equal to Dp′

x D
β+q′

ξ A, so that DA exists and is

equal to Dα+p′

x Dβ+q′

ξ A; and it is also equal to Dβ+q′

ξ Dα+p′

x A. The second
case D = Dβ

ξD
α
xD
′ follows the same reasoning, which proves the property

in the statement.

Remark. To complete the obtained formulae, it is good to add the fol-
lowing: by applying (9.21b) to T = Dpδ(a), with a ∈ X, we see that

(9.25) (HDpδ(a))(x) = (−1)|p|(Dp
ξA)(x, a);

so Dp
ξA(·, a) ∈H (48).

Equations (9.22) and (9.23) then give:

(Dq
ξA(·, b) | Dp

ξA(·, a)) = Dp
xD

q
ξA(a, b)(9.26) ∥∥∥Dp

ξA(·, a)
∥∥∥2

H
= Dp

xD
p
ξA(a, a).

Finally, for h ∈H , (4.2) gives

(9.27) (Dph)(a) = 〈h, (−1)|p|Dpδ(a)〉 = (h | Dp
ξA(·, a))H

so in particular the upper bound

(9.28) |(Dph)(a)| 5 ‖h‖H ((Dp
xD

p
ξA)(a, a))1/2.

There is no reason, in these formulae, to restrict ourselves to differential
operators with constant coefficients. Let P and Q be two differential

(48)Such a notation DpξA(·, a) shows the derivative of A with respect to the second variable,
considered, for this second variable being equal to a, as a function of the first variable. We
could also write it, more rigorously, as x 7→ (DpξA(x, ξ))ξ=a.
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operators with any C∞ coefficients of order 5 m. By applying (9.21b) to
tPδ(a) we obtain

(9.30) H · tPδ(a) =

∫
X

A(·, ξ) tPδ(a)dξ = PξA(·, a).

(9.22) and (9.23) then give

(QξA(·, b) | PξA(·, a))H(9.31)

= 〈QξA(·, b), tPδ(a)〉
= P xQξA(a, b).

For h ∈H , (4.2) gives

Ph(a) = 〈h, tPδ(a)〉(9.32)
= (h | PξA(·, a))H .

3◦) Dp
xD

p
ξH (distribution) is the kernel of DpH (Example 3, page 43); so∑

|p|=m
Dp
xD

p
ξH is the kernel of

∑
|p|=m

DpH . But, according to the closed

graph theorem, H is a Hilbert subspace of Em(X) as soon as it is con-
tained in Em(X); for that, it is necessary and sufficient that

∑
|p|=m

DpH

is contained in E 0(X), or is a Hilbert subspace of E 0(X), and for that
it is necessary and sufficient that its kernel

∑
|p|=m

Dp
xD

p
ξH is a separately

continuous and locally bounded function, which shows the first sufficient
condition.

The second can be shown by induction on m. It is true for m = 0
(or for m = 1, since it then coincides with the first). Let us suppose
that it has been shown for m = 0, 1, 2, ..., l − 1, and let us show it for
m = l. For H to be a Hilbert subspace of E l, it is necessary and suffi-

cient that
n∑
i=1

∂
∂xi

H is a Hilbert subspace of E l−1; as the kernel of E l−1

is
n∑
i=1

∂2H
∂xi∂ξi

, it is necessary and sufficient, by the induction hypothesis,

that

(
n∑
i=1

∂2

∂xi∂ξi

)l−1(
n∑
i=1

∂2

∂xi∂ξi

)
H is a separately continuous and lo-

cally bounded function, which is the result we were after.

4◦) By Proposition 9c, for the inclusion of H in Em(X) to be compact, it
is necessary and sufficient that A is in Em(X) “⊗εEm(X) and that H̃ is a
non-negative sesquilinear form on E ′m(X)× E ′m(X). The non-negativity
of H̃ is automatic once A is in Em(X) “⊗εEm(X) and A is of positive type,
following the criterion in Corollary 3 of Proposition 21: every T ∈ E ′m

is a weak limit of a sequence of discrete measures, so belong to (CX)′.
Then Em(X) “⊗εEm(X) = Em,m

x,ξ is precisely the space of functions whose
derivatives of order 5 m in x and 5 m in ξ are continuous on X ×X.
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Remark. If H ∈ Em(X), there is a compact inclusion into Em−1(X), since the
inclusion Em(X) → Em−1(X) transforms every bounded subset into relatively
compact subsets. In addition, every function on X × X with locally bounded
derivatives of order 5 m in x and in ξ has continuous derivatives of order 5 m−1
in x and in ξ on X ×X (and even locally Lipschitz). This is compatible with
4◦).

Proposition 26. Let X be a locally compact space for m = 0, and an open sub-
set of Rn for m = 1 (potentially infinite). For a Hilbert subspace H of Em(X)
to be a Hilbert subspace of Bm(X) (space of continuous bounded functions on
X, with derivatives of order 5 m also continuous and bounded, equipped with
the topology of uniform convergence on X of each derivative of order 5 m), it
is necessary that each derivative Dp

xD
q
ξA for |p| 5 m and |q| 5 m is bounded

on X ×X, and it is sufficient that
∑
|p|5m

Dp
xD

p
ξA is bounded on the diagonal of

X ×X.

Proof. Let us first suppose that H is a Hilbert subspace of Bm(X). For |p| 5 m,
Dpδ(x) ranges over a weakly bounded subset of Bm(X) as x ranges over X. As
the sesquilinear form H̃ associated to H stays bounded on every product of
bounded subsets of Bm(X), Equation (9.24) shows that Dp

xD
q
ξA is bounded on

X ×X.
Conversely, let us suppose that A is bounded on the diagonal of X ×X, so

bounded on X ×X by |A(x, ξ)| 5 (A(x, x))1/2(A(ξ, ξ))1/2. Equation (9.28) for
|p| = 0 shows that each h in H is bounded on X, so H is a Hilbert subspace
of B0(X) by the closed graph theorem. If

∑
|p|5m

Dp
xD

p
ξA is bounded on X ×X,

as it is the kernel of
∑
|p|5m

DpH , this proves that each DpH is in B0(X), so

H is in Bm(X) and H is a Hilbert subspace of Bm(X) by the closed graph
theorem.

Proposition 27. Let X be a locally compact space for m = 0, and an open
subset of Rn for m = 1. Let U be a uniform structure on X, compatible with
its topology. Let Bm

U (X) be the (complete) space of bounded and uniformly con-
tinuous (with respect to U ) functions on X, each of whose derivatives of order
5 m are also bounded and uniformly continuous with respect to U , equipped
with the topology induced by Bm(X). For a Hilbert subspace H of Bm(X) to
be a Hilbert subspace of Bm

U (X), it is necessary for each function (Dp
xD

q
ξA)(·, a),

|p| 5 m, |q| 5 m, a ∈ X, to be uniformly continuous with respect to U , and it
is sufficient for each function Dp

x(A)(·, a) to be so.

Proof. If H ⊂ Bm
U , the function Dq

ξA(·, a) ∈ H is in Bm
U so each of its

derivatives Dp
xD

q
ξA(·, a) is uniformly continuous on X with respect to U .

Conversely, if each Dp
xA(·, a) is uniformly continuous on X with respect to

U , then A(·, a) is in Bm
U ; every h ∈ H is the limit, in H and hence in Bm,

of finite combinations of functions A(·, a) ∈ Bm
U , and Bm

U is closed in Bm; so
h ∈ Bm

U , and H is a Hilbert subspace of Bm
U .

Remark. This type of statements, pertaining to Bm and Bm
U , is found each

time one has a locally convex, quasi-complete Hausdorff vector space and a
closed subspace, equipped with the induced topology.
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Application. Bergman’s invariant Hermitian form on a complex ana-
lytic manifold. (49)

Let V be a complex analytic manifold, of complex dimension n. Let
n

H
be the Hilbert space of holomorphic and square-integrable differential forms of
degree n, equipped with the scalar product:

(9.33) (ω | ω̄)H =

(
1

2i

)n
ε

∫
V

ω ∧ ω̄.

The form ω is of type (n, 0) and ω̄ of type (0, n) so ω ∧ ω̄ is of degree 2n, and
the integral makes sense, since ω and ω̄ are square-integrable. In accordance
with the established practice, the orientation of V is that for which, in local
coordinates z1, z2, ..., zn, the form

(
1
2i

)n
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ ...∧ dzn ∧ dz̄n is

non-negative; ε = ±1 is then the sign of the form(
1

2i

)n
dz1 ∧ dz2 ∧ ... ∧ dzn ∧ dz̄1 ∧ dz̄2 ∧ ... ∧ dz̄n,

such that, for every ω, (ω | ω)H = 0, and H is Hilbert.
H is a Hilbert subspace of the space E of the C∞ differential forms of type

(n, 0)(50); it thus has an associated kernel H, a continuous linear map from(
n,0

E

)′
=

0,n

E ′ =
n,0

E ′ into
n,0

E .

We define the anti-duality between
n,0

E and
n,0

E ′ by

(9.33b) (f | T )n,0

E ,
n,0

E
=

(
1

2i

)n
ε

∫
f ∧ T̄ = (T | f)n,0

E ,
n,0

E
.

We will identify H with a C∞ differential form of type (n, 0, 0, n) on V × V , by
the following convention:

(9.34) H · T =

(
1

2i

)n
(−1)nε

∫
V

Hx,ξ ∧ Tξ.

Let Ω be an open subset of V , equipped with local coordinates zi. Let i be
the natural inclusion D(Ω) → D(V ); its adjoint i∗ is the restriction operation
ρ : D ′(V ) → D ′(Ω), which associates its restriction to Ω to each current of V .
The restriction of H to Ω is nothing but the composition map ρHi; according
to Proposition 21, it is thus the kernel associated to the Hilbert space image

ρ(H ) of H in
n,0

D ′ (Ω); an element of ρ(H ) is a holomorphic form of degree
n on Ω, which is the restriction of a square-integrable holomorphic form on V .
On Ω× Ω, the differential form H is given by:

(9.35) A(x, ξ)dz1 ∧ dz2 ∧ ... ∧ dzn ∧ dζ1 ∧ dζ2 ∧ ... ∧ dζn,

where A is a C∞ function. Let T ∈
0,0

E ′ (Ω); then Tdζ1∧dζ2∧...∧dζn is an element

of
n,0

E ′ (Ω), and, taking into account the fact that dζ1∧dζ̄1∧dζ2∧dζ̄2∧...∧dζn∧dζ̄n
(49)See Bergman [1].
(50)See, for example, André Weil [1], beginning of Chapter I.
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is (2i)n times the Lebesgue measure dξ on Ω, we see that

H · (Tdζ1 ∧ dζ2 ∧ ... ∧ dζn) =

(∫
V

A(x, ξ)Tξdξ

)
dz1 ∧ dz2 ∧ ... ∧ dzn.

So if we agree to identify, on Ω, the forms of type (n, 0) with the functions,
or the (n, 0)-currents with the distributions, by identifying T with T̃ = Tdz1 ∧
dz2 ∧ ...∧dzn, ρ(H ) is identified with the space of holomorphic functions on Ω,
whose product with dz1 ∧ dz2 ∧ ...∧ dzn is the restriction of a square-integrable
holomorphic form on V ; and its kernel E ′(Ω)→ E (Ω) is the reproducing function
(x, ξ) 7→ A(x, ξ). We thus have, in particular, A(x, x) = 0. Moreover, we have
∂
∂z̄i
ρ(H ) = 0 so, according to Corollary 2 of Proposition 21, ∂A

∂z̄i
= ∂A

∂ζi
= 0: A

is holomorphic in x and anti-holomorphic in ξ. The form H thus has the same
property globally.

Let us suppose that A(x, x) > 0; the function A(x, ·) is thus non-negative in
x; as it is in ρ(H ), there exists a form in H which is non-zero in x. Conversely,
let us suppose that this condition is realised; (9.11b) shows that A(x, x) is also
non-zero. We will henceforth assume that, for every x in V , there exists a form
in H which is non-zero in x; then, for every local chart, A(x, x) > 0 everywhere.

Let K be the restriction of the form H to the diagonal of V × V , multiplied
by ε

(
1
2i

)n; by identifying this diagonal to V , it is a differential form of degree
2n on V ; on Ω it is given by

(9.37) K = A(x, x)dx = B(x)dx,

an everywhere strictly positive C∞ differential form.
But, on a complex analytic manifold V , a real, everywhere 6= 0, C∞ differ-

ential form of degree 2n allows for the definition of a Hermitian form. Let us
indeed write:

(9.38) g =
∑
i,j

gi,jdzidz̄j =
∑
i,j

∂2 logB

∂zi∂z̄j
dzidz̄j .

This form is independent of the system of local coordinates zi, chosen in Ω. If,
indeed, z′i is another, we first have

K = ε

(
1

2i

)n
Bdzi ∧ dz2 ∧ ... ∧ dzn ∧ dz̄1 ∧ dz̄2 ∧ ... ∧ dz̄n(9.39)

= ε

(
1

2i

)n
B′dz′1 ∧ dz′2 ∧ ... ∧ dz′n ∧ dz̄′1 ∧ dz̄′2 ∧ ... ∧ dz̄′n,

whence

(9.40) B = B′JJ̄,

where J is a the Jacobian determinant of the zi with respect to z′j .
Then

(9.41)
∂2 logB

∂zi∂z̄j
=
∂2 logB′

∂zi∂z̄j
+
∂2 log J

∂zi∂z̄j
+
∂2 log J̄

∂zi∂z̄j
=
∂2 logB′

∂zi∂z̄j
,

because ∂
∂z̄j

log J = ∂
∂zi

log J̄ = 0.
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After that, we immediately have

∂2 logB′

∂zi∂z̄j
=

∂

∂zi

∑
l

(
∂ logB′

∂z̄′l

∂z′l
∂zj

)
=
∑
l

(
∂

∂zi

∂ logB′

∂z̄′l

)
∂z′l
∂zj

(9.42)

=
∑
k,l

∂2 logB′

∂z′k∂z̄
′
l

∂z′k
∂zi

∂z′l
∂zj

.

We thus have∑
i,j

∂2 logB

∂zi∂z̄j
dzidzj =

∑
i,j

∂2 logB′

∂zi∂z̄j
dzidz̄j(9.42b)

=
∑
i,j,k,l

∂2 logB′

∂z′k∂z̄
′
l

(
∂z′k
∂zi

dzi

)(
∂z′l
∂zj

dzj

)
=
∑
k,l

∂2 logB′

∂z′k∂z̄
′
l

dz′kdz̄
′
l.

The form defined on Ω is thus intrinsic, and we have a form on V , which is
manifestly C∞, and Hermitian, because B is real. Let us now show that it is
non-negative. We have to show that, for any a ∈ V and any complex numbers
Zi, we have:

(9.43)
∑
i,j

∂2 logB

∂zi∂z̄j
(a)ZiZ̄j = 0.

Let X be a field of holomorphic vectors, X =
∑
i

Xi
∂
∂zi

such that Xi(a) = Zi.

Taking into account:

(9.44) gi,j =
∂2 logB

∂zi∂z̄j
= − 1

B2

∂B

∂zi

∂B

∂z̄j
+

1

B

∂2B

∂zi∂z̄j
,

the preceding inequality can also be written under the form

(9.45)
∑
i,j

ZiZ̄j
∂B

∂zi
(a)

∂B

∂z̄j
(a) 5 B(a)

∑
i,j

ZiZ̄j
∂2B

∂zi∂z̄j
(a).

But, as A is holomorphic in x and anti-holomorphic in ξ, we have

∂B

∂zi
(a) =

(
∂A

∂zi
+
∂A

∂ζi

)
(a, a) =

∂A

∂zi
(a, a)

and likewise:

∂B

∂z̄i
(a) =

∂A

∂ζ̄i
(a, a),

∂2B

∂zi∂z̄j
(a) =

∂2A

∂zi∂ζ̄j
(a, a).

(9.45) thus can be written as

(9.46)

∣∣∣∣∣∣
∑
i

Zi
∂A

∂zi
(a, a)

∣∣∣∣∣∣
2

5 A(a, a)
∑
i,j

ZiZ̄j
∂2A

∂zi∂ζ̄j
(a, a)

or ∣∣θ(Xx) ·A
∣∣2 5 A(θ(Xx) · θ(X̄ξ) ·A) for ξ = x = a.
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Let us apply the formula of reproducing kernels (9.31) for the differential oper-
ators 1 and θ(X). The above is then equivalent to

(9.48)
∣∣∣(A(·, a) | θ(X̄ξ)A(·, a)

)
ρ(H )

∣∣∣2 5 ∥∥A(·, a)
∥∥2

ρ(H )

∥∥θ(X̄ξ)A(·, a)
∥∥2

ρ(H )
,

which is simply the Cauchy-Schwarz inequality. In general, the inequality will
be strict, and

∑
i,j

gi,j(a)ZiZ̄j > 0. We will have the equality = 0 if and only if

there exists a complex number λ such that

θ(X̄ξ)A(·, a)− λ̄A(·, a) = 0.

By (9.32), it is equivalent to saying that, for every h ∈ ρ(H ), we have (θ(X) ·
h)(a)− λh(a) = 0 or ∑

i

Zi
∂h

∂zi
(a)− λh(a) = 0.

So the form g will be positive definite if and only if, for every a and every
system of local coordinates zi in the neighbourhood of a, there exists no non-
trivial linear relationship between the values of ω and its derivatives ∂ω

∂zi
in a,

satisfied by every ω in H (i.e. the n + 1 linear forms on H : ω 7→ ω(a),
ω 7→ ∂ω

∂zi
(a), are independent).

We can canonically associate a differential form γ of type (1, 1) to the Her-
mitian form g, which will be, in Ω:

(9.49) γ =
∑
i,j

gi,jdzi ∧ dz̄j = dzdz̄ logB.

The expression of this form shows that it is closed, so V is a Kähler manifold
with respect to g.

(Let us finally remark that, if V does not satisfy the condition indicated on
page 62 with regards to the the existence of a square integrable holomorphic
form, we can always still construct g, but it has some singularities on the analytic
set W of zeros shared by all holomorphic forms of H . We assume that there
exists at least one such non-zero form, without which K = 0, and we can then
take g = 0). The function logB is locally integrable; if, indeed, h̃ ∈ ρ(H ) is
not identically zero, the Equation (9.11b) shows that, in Ω:

(9.50) B(x) =
h(x)

‖h‖
;

as log h is locally integrable, logB is likewise locally integrable. So Equation
(9.49) defines a closed current of type (1,1) on Ω; the method employed in
Equation (9.41) shows that the definition is intrinsic and thus valid on V .

We can summarise the preceding results as follows:

Proposition 27b. Let V be a complex analytic manifold, of complex dimension
n. Suppose that, for every a in V , and every system of local coordinates zi in
the neighbourhood of a, there exists no non-trivial linear relationship between
the values at a of ω and the ∂ω/∂zi, satisfied by all holomorphic forms ω of
degree n, square integrable on V (example: V is a bounded open subset of Cn).
Then Equation (9.38) defines a positive definite Hermitian form g on V , for
which V is a Kähler manifold.
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§10. Case where Ē′ is a subspace of E

In this section, we will take as given a Hermitian inclusion I of Ē′ in E. Through
I we will identify Ē′ with a subspace of E and we will often call I the identity.
By Proposition 4, I is weakly (and strongly) continuous; moreover, as I is
injective, I = I∗ has a dense image, and Ē′ is dense in E. If I = 0, it defines a
Hilbert subspace of E, containing Ē′ as a dense subspace with weakly continuous
inclusion; it will be given by the structure and we will call it the canonical L2

Hilbert subspace of E. The example we will most often consider is E = D ′(X),
the space of distributions on an open subset X of Rn, with Ē′ = D ⊂ D ′; L2

here is indeed the usual space of square integrable (with respect to dx) functions
on X. We could also take E = D ′mc (X) with Ē′ = Dm(X), E = S ′(Rn) with
Ē′ = S (Rn), etc. Conversely, if H is a dense Hilbert subspace of a space E,
its kernel H is a non-negative inclusion of Ē′ in E, weakly continuous, which
can play the role of I, and L2 is then H .

The fact that I is Hermitian yields following: for ē′ ∈ Ē′ and f ′ ∈ E′, we
have

(10.1)

{
〈ē′, f ′〉E,E′ = 〈f̄ ′, e′〉E,E′
(ē′ | f̄ ′)E,Ē′ = (ē′ | f̄ ′)Ē′,E

the latter scalar products (· | ·) are those of (0.4), but also (· | ·)L2 which are
induced by L2. In the case E = D ′(X) there exists a natural anti-involution on
D and D ′, Ē′ = E′ with Ī = I, so I∗ = tI = Ī = I (that is to say, if φ̄ is the
conjugate of φ in D , it is also its conjugate in D ′) and (10.1) for φ, ψ ∈ D is
also given by

(10.2)

{
〈φ, ψ〉D′,D = 〈φ, ψ〉D,D′
(φ | ψ)D′,D = (φ | ψ)D,D′ = (φ | ψ)L2 .

Normal subspace of E.
We will say that a locally convex topological vector subspace F of E, with a

weakly continuous inclusion F → E, is normal, if Ē′ is a dense subspace of F ,
with a weakly (thus strongly) continuous inclusion.

It is worth knowing that in some cases this condition of continuity of the in-
clusion Ē′ → F is automatic. This will follow from the Corollary of Proposition
28.

Proposition 28. Let A be a locally convex, quasi-complete Hausdorff space,
and B a locally convex metrisable space. A linear map u from A′ into B′,
continuous with respect to σ(A′, A) and a locally convex Hausdorff topology C
coarser than σ(B′, B), is also continuous with respect to σ(A′, A) and σ(B′, B).

Proof. The dual of B′C equipped with C is a subspace B1 of B, weakly dense
in B (the inclusion B1 → B is the transpose of the inclusion B′ → B′C ) so
strongly dense in B. The transpose tu of u is linear from B1 into A, and
continuous with respect to σ(B′, B) and σ(A,A′). Then the image under tu of
a B-bounded subset of B1 is weakly bounded in A, so strongly bounded; so, as
B is metrisable, tu is continuous from B1 equipped with the topology induced
by C , into A. But B1, being dense in a metrisable space B, is strictly dense, and
A is quasi-complete; so tu extends to a continuous linear map

_
tu from B into
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A. The transpose of
_
tu is necessarily again u (indeed, for a′ ∈ A′ and b′ ∈ B′,

we have 〈t
_
tu a′, b〉 = 〈a′,

_
tu b〉; by taking b ∈ B1, we see that (t

_
tu a′−ua′) ∈ B′

is orthogonal to B1 which is dense in B, so vanishes). So u is continuous with
respect to σ(A′, A) and σ(B′, B).

Corollary. With the conditions indicated at the beginning of the section, if F is
a subspace of E with weakly continuous inclusion, and if F is a reflexive Fréchet
dual, in particular if it is a reflexive Banach space or a Hilbert space, and if Ē′
is contained in F , the inclusion Ē′ → F is automatically weakly continuous.

Proof. It suffices to apply the Proposition to A = Ē, B = F ′ with the strong
topology (reflexive Fréchet) and the inclusion u : Ē′ → F . Then u is continuous
with respect to σ(Ē′, Ē) and σ(F,E′) (topology induced by σ(E,E′)), since
Ē′

I→ E is weakly continuous. But F → E is weakly continuous, so σ(F,E′) is
coarser than σ(F, F ′). The Proposition says that Ē′ → F is weakly continuous.

So let F be a normal subspace of E. Then, from the dense weakly continuous
inclusions Ē′ u→ F

j→ E we will deduce, by passing to adjoints, the weakly
continuous and weakly dense inclusions Ē′ j

∗

→ F
u∗→ E; we can thus again identify

F̄ ′ with the weak topology with a normal subspace of E. If, moreover, F is
reflexive, Ē′ will be strongly dense in F̄ ′ and F̄ ′ with the strong topology is
also a normal subspace of E (in general, in the following, F will be a Hilbert
space). We must naturally ensure that the identification of F̄ ′ with a subspace
of E is not in contradiction with the other identifications previously made. For
example, if F = H is Hilbert, the identification of H̄ ′ with a subspace of E is
incompatible with the identification θ of H̄ ′ with H coming from the Hilbert
structure of H . (There is one exceptional case: H = L2 if I = 0. The inclusion
of H̄ ′ in E by the first identification is indeed u∗, and the inclusion defined by
the second is jθ; they coincide if and only if u∗jθ or u = θj∗, that is to say,
if I = ju is the kernel jθj∗ of the Hilbert subspace H of E, or if Ii = 0 and
H = L2).

In the whole of this section, the identification of F̄ ′ with a subspace of E will
be the only valid identification. This identification can be expressed as follows:
for e′ ∈ E′ and f ′ ∈ F ′:

(10.3)

{
〈ē, f ′〉F,F ′ = 〈f̄ ′, e′〉E,E′ , or
(ē′ | f̄ ′)(Ē′,E) or (E,Ē′) = (ē′ | f̄ ′)(F̄ ′,F ) or (F,F̄ ′)

.

Or alternatively: we identify f̄ ′ ∈ F̄ ′ with the element of E which defines on E′
the weakly continuous linear form e′ 7→ 〈f ′, ē′〉F ′,F .

Or finally: we identify F̄ ′ with the subspace of E consisting of the e such
that the linear form ē′ 7→ 〈e, e′〉E,E′ is continuous on Ē′ equipped with the
topology induced by F . When there are contragredient anti-involutions on E
and E′ with Ī = I, we will no longer speak of Ē and Ē′, but only of E and
E′; then F , F̄ , F ′ and F̄ ′ will all be subspaces of E; if F = F̄ , we also have:
F ′ = F̄ ′. For example, if E = D ′(X), the identification of F ′ with the subspace
of D ′ is given by

(10.4) 〈T, φ〉D′,D = 〈T, φ〉F ′,F , φ ∈ D , T ∈ F ′.
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(T ∈ F ′ is identified with the distribution φ → 〈T, φ〉F ′,F ; T ∈ D ′ belongs to
the subspace F ′ if and only if φ→ 〈T, φ〉 is continuous on D equipped with the
topology induced by F ).

And then F̄ ′ is the conjugate of F ′ in D ′. We can define it directly by

(10.5) (T | φ)D′,D = (T | φ)F̄ ′,F , φ ∈ D , T ∈ F̄ ′.

(T ∈ F̄ ′ is identified with the distribution φ 7→ 〈T, φ〉F̄ ′,F̄ ; T ∈ D ′ belongs to
the subspace F̄ ′ if and only if φ 7→ 〈T, φ̄〉 is continuous on D equipped with the
topology induced by F ).

What we call here a normal subspace of E is what we have elsewhere called
subspace of normal distributions on X(51).

Proposition 28b. Let H be a normal subspace of E, with kernel H, and let
H̄ ′ be the kernel of H̄ ′ as a Hilbert subspace of E. Then H and H̄ ′, linear maps
from Ē′ into E, extend in a unique manner to continuous linear maps Ĥ and
ˆ̄H ′ from H̄ ′ into H and from H into H̄ ′ respectively, which are inverses of
each other and are inverse canonical isomorphisms between H and H ′.

Proof. H is defined by (4.1) as being the composition Ē′
j∗→ H̄ ′ θ→ H

j→ E,
where j is the inclusion of H in E, j∗ the inclusion of Ē′ in H̄ ′ and θ the
canonical isomorphism of H̄ ′ onto H ; so H extends to Ĥ = θ and the extension

is unique since Ē′ is dense in H̄ ′. Likewise H̄ ′ is defined by Ē′ →H
θ−1

→ H̄ ′ →
E, and extends to ˆ̄H ′ = θ−1, and the Proposition is shown.

Thus we see the relationship between the kernels H and H̄ ′ from H into
H̄ ′ in E: in some sense, they are inverses of each other.

Construction of H and H̄ ′ by the kernel H of H .

We know how to construct H from its kernel H: H is the completion in
E of the space H0 = H(Ē′) equipped with the norm ‖Hē′‖H = 〈Hē′, e′〉1/2
(Proposition 10). But, if H is normal, we can also construct H̄ ′ from the
kernel H of H :

Proposition 29. Let H be a normal subspace of E, with kernel H. Then H̄ ′

is the completion of Ē′ in E, equipped with the norm

‖ē′‖H̄ ′ = 〈Hē′, e′〉1/2 and with scalar product:(10.6)
(ē′ | f̄ ′)H̄ ′ = 〈Hē′, f ′〉.(10.7)

Proof. Ē′ is dense in H̄ ′, so H̄ ′ is the completion of Ē′ in E equipped with the
norm induced by H̄ ′. But since Ĥ = θ, a canonical isomorphism of H̄ ′ on H
(Proposition 28b), we have (ē′ | f̄ ′)H̄ ′ = (Hē′ | Hf̄ ′)H , and so we have (10.7)
and then also (10.6).

In the same vein, let H and K be Hilbert subspaces of E, with H normal;
and let v be a continuous linear map from E into E. We saw in Proposition
22b how to characterise inclusions v(H̄ ′) 5 K or = K , by the inequalities
involving v and the kernels H̄ ′ and K of H̄ ′ and K . But it is interesting to
(51)See Schwartz [3], page 7.
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have the inequalities involving v and the kernels H and K of H and K . We
will simply remark, by reusing (4.7), that

(10.7b)

‖Hv
∗e′‖H̄ ′ = ‖v∗ē′‖H =

sup
f ′∈E′

|〈v∗ē′,f ′〉|
〈Hf̄ ′,f ′〉1/2 = sup

f ′∈E′
|〈vf̄ ′,e′〉|
〈Hf̄ ′,f ′〉1/2 . From this:

Proposition 29b. Let H and K be Hilbert subspaces of E, with H normal;
let H and K be their kernels. Let v be a continuous linear map from E into E.

1◦) The necessary and sufficient condition for v(H̄ ′) 5 K is that for every
e′, f ′ ∈ E′, we have

(10.7c) |〈vf̄ ′, e′〉| 5 〈Hf̄ ′, f ′〉1/2〈Kē′, e′〉1/2.

This condition is satisfied if, for every e′ ∈ E′, we have

(10.7d) |〈vē′, e′〉| 5 1

2
〈Hē′, e′〉1/2〈Kē′, e′〉1/2.

2◦) The necessary and sufficient condition for v(H̄ ′) = K is that we have,
for every e′ ∈ E′:

(10.7e) sup
f ′∈E′

|〈vf̄ ′, e′〉|
〈Hf̄ ′, f ′〉1/2

= 〈Kē′, e′〉1/2.

This condition is satisfied if we have, for every e′ ∈ E′:

(10.7f) |〈vē′, e′〉| = 〈Hē′, e′〉1/2〈Kē′, e′〉1/2.

As we remarked after Proposition 22b, the even stronger condition

(10.7g) Re〈vē′, e′〉 = 〈Hē′, e′〉1/2〈Kē′, e′〉1/2

is known under the name of coercivity.
Let us take, for example, an open subset X of Rn, and H = K = H −s(X),

defined on page 8. Its kernel is D, the differential operator in Equation (4.11).
Then H̄ ′ = H s

0 (X) (see Example on page 70). The inequality (10.7f) is
then, for every φ ∈ D(X): ∣∣∣∣∫

X

(vφ)φ̄dx

∣∣∣∣ = ‖φ‖2H s
0

which is sufficient to ensure v(H s
0 ) =H −s; the inequality

(10.7h)
∣∣∣∣∫
X

(vφ)φ̄dx

∣∣∣∣ = const. ‖φ‖2H s
0

is sufficient to ensure v(H s
0 ) ⊃H −s. We recover some well-known facts.

Proposition 30. Let H be a Hilbert subspace of E, with kernel H. For Ē′ to
be a (not necessarily dense) subspace of H (with weakly continuous inclusion),
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it is necessary and sufficient that Ē′
H̄ ′ , with which we denote Ē′ equipped with

the seminorm (10.6), has a continuous inclusion in E, or that its unit ball

(10.8) B = {ē′ ∈ Ē′ : 〈Hē′, e′〉 5 1}

is bounded in E ((10.6) is then a norm).
For H to be normal (in other words, for Ē′ to be additionally dense in H ),

it is necessary and sufficient that Ē′
H̄ ′ additionally has a completion in E (which

is then H̄ ′), or that B is closed in Ē′ with respect to the topology induced by
E. (B is then the intersection of Ē′ with the unit ball of H̄ ′).

Proof. 1◦) To say Ē′ ⊂ H is to say (Proposition 8) that, for every f̄ ′ ∈ Ē′,
sup

〈Hē′,e′〉51

|〈f̄ ′, e′〉| is finite; by replacing |〈f̄ ′, e′〉| by |〈f ′, ē′〉|, this implies

that B is weakly bounded in E, or strongly bounded, or that the inclusion
Ē′

H̄ ′ → E is continuous.

2◦) If H is normal, we saw in Proposition 29 that Ē′
H̄ ′ has a completion in

E, which is H̄ ′. Let us conversely suppose that Ē′
H̄ ′ has a completion in

E, say K . Then K is normal. So K̄ ′ is also normal. But it is, by what
was said after (10.3), the set of the h such that ē′ → 〈h, e′〉 is continuous
with respect to the topology of Ē′

H̄ ′ ; in other words, the set of the h which
satisfy (4.6), so it is H , which is normal.

We know moreover that (Proposition 1) Ē′H has a completion in E, if and
only if B is closed in Ē′, with respect to the topology induced by E.

Remark 1. Let us suppose that the kernel H of H extends to a weakly con-
tinuous linear map from E into itself. Then the inverse image under H of the
unit ball of H , a weakly compact and therefore weakly closed subset of E, is
weakly closed in E; its intersection with Ē, which is just B, is closed in Ē′ with
respect to the topology induced by E, So, in this case, if B is bounded in E, it
is sufficient to ensure that H is normal. We can also see this in another way.
H = H∗ maps Ē′ into Ē′; and H0 = H(Ē′) ⊂ Ē′ is dense in H ; it is therefore
sufficient that Ē′ is contained in H for it to be dense there and for H to be
normal.

Remark 2. Whether or not H is normal, the inclusion j : H → E always
has an adjoint j∗ : Ē′ 7→ H̄ ′ (but H̄ ′ is not necessarily identifiable with a
subspace of E). We always have: ‖ē′‖H̄ ′ (defined by (10.6)) = 〈Hē′, e′〉1/2 =
‖Hē′‖H = ‖θj∗ē′‖H = ‖j∗ē′‖H̄ ′ (norm of j∗ē′ in H̄ ′). If H is not dense in
E, j∗ is not injective, and ‖ē′‖H̄ ′ is only a seminorm. In any case, j∗ is a dense
isometry(52) from Ē′

H̄ ′ into H̄ ′ and allows us to consider H̄ ′ as a complete
Hausdorff space in Ē′

H̄ ′ ; which justifies the notations Ē′
H̄ ′ and ‖ē′‖H̄ ′ . If H

is normal, j∗ is injective, and H̄ ′ is the completion of Ē′
H̄ ′ , its completion in

E.

Corollary. Let Hi, i ∈ I be a finite set of Hilbert spaces. Let ui be a continuous
linear map from Hi into E, and let H =

∑
i∈I

ui(Hi), with kernel H.

(52)This isometry is not injective if Ē′
H̄ ′ is not Hausdorff.
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Let us identify H̄ ′
i with Hi, and let u∗i : Ē′ → Hi be the adjoint of ui. Let

us equip Ē′ with the scalar product

(10.9) (ē′ | f̄ ′)H̄ ′ =
∑
i∈I

(u∗i ē
′ | u∗i f̄ ′)Hi

and with the norm

(10.10)
∥∥ē′∥∥2

H̄ ′ =
∑
i∈I

∥∥u∗i ē′∥∥2

Hi
;

it becomes a pre-Hilbert space Ē′
H̄ ′ .

In order to have Ē′ ⊂H (with weakly continuous inclusion), it is necessary
and sufficient that the inclusion Ē′

H̄ ′ → E is continuous; for H to be normal,
it is necessary and sufficient that Ē′

H̄ ′ moreover has a completion in E, and it
is then H̄ ′.

Proof. If we identify H̄ ′
i with Hi, the kernel of Hi in E is uiu∗i (Proposition

21, as the kernel of Hi in itself is the identity), so the kernel of H =
∑
i∈I

Hi in

E is H =
∑
i∈I

uiu
∗
i . Then (10.9) and (10.10) are nothing but (10.7) and (10.6)

with H, because:

〈Hē′, f ′〉 =
∑
i∈I
〈uiu∗i ē′, f ′〉E,E′ =

∑
i∈I

(uiu
∗
i ē
′ | f̄ ′)E,Ē =(10.11)

=
∑
i∈I

(u∗i ē
′ | u∗i f̄ ′)H ,

and it then suffices to apply Proposition 30.

Remark 1. Let us suppose that the Hi are in E, and that the ui can be
extended to weakly continuous linear maps Ē′ → Ē′, and E → E. Then u∗i can
likewise be extended, and so uiu∗i and H can also be extended. Then we can
apply the remark which follows Proposition 30; it suffices that Ē′ ⊂H for H
to be normal.

Remark 2. Let us suppose that one of the Hi is a subspace of E containing Ē′,
with the corresponding map ui being the inclusion of Hi in E; then a fortiori
Ē′ ⊂H .

Example. Let us go back to Example 2 on page 8. We have E = D ′(X), where
X is an open subset of Rn, Hp = L2(X) for every index p = (p1, p2, ..., pn) of
order |p| 5 s, and up =

√
apD

p, the differentiation, a continuous linear map from
Hp into E. Thanks to the natural anti-involution of D ′, we take Ē′ = D(X).
Then u∗p = (−1)|p|

√
apDp, a map from Ē′ into Hp. As the Dp can be extended

to D → D and D ′ → D ′, and for p = (0, 0, ..., 0), we have Hp = L2 with up
being the inclusion L2 → D ′, and the preceding Remarks 1 and 2 show that
H is normal. In fact we see directly that D , equipped with the scalar product
(10.9) which is nothing but (1.1), has a continuous inclusion in D ′(X) and a
completion in D ′(X) which is nothing but H s

0 (X), the closure of D in H s. We
thus have

H =
∑
|p|5s

√
apD

pL2 = (H̄ s
0 )′ = H −s, and H̄ ′ = H s

0 .

70



The kernel of H = H −s in D ′ is thus the differential operator

D =
∑
|p|5s

(−1)|p|apD
2p

(Equation (4.11), Example 2 on page 23, considered as an operator from D
into H −s or D ′). According to Proposition 28b, D is an isomorphism from
H̄ ′ = H s

0 onto H −s; it is a classical theorem from the theory of elliptic partial
differential equations. The inverse isomorphism G : H −s → H s

0 is called
the Green’s operator of D; it is the kernel of the Hilbert subspace H s

0 of D ′

(Proposition 28b), if we consider it as an operator D → H s
0 → D ′. D and G

are the canonical inverse isomorphisms between H = H −s and H̄ ′ = H s
0 .

Remark. Let us now suppose that some of the ap are zero. Remark 2 is no
longer applicable, because none of the operators up are now the identity. And
indeed, it is no longer necessarily correct that H is normal; this depends on the
ap, X and n. It is always normal if X is bounded in Rn and at least one of the
ap is non-zero, because we know then that DH still has a continuous inclusion
in D ′(53), and consequently has a completion in D ′ (Remark 1). The kernel of
H is always the differential operator

∑
|p|=s

(−1)|p|apD
2p; if H is normal, this

operator has a Green’s operator, which is the kernel of H̄ ′ in D ′.

Case of extendable kernels.

We will say that a kernel v : Ē′ → E is extendable, if it is weakly continuous
from Ē′ into Ē′, and extends (necessarily in a unique manner, since Ē′ is dense in
E) to a weakly continuous linear map from E into E, which we again denote by
v. Its adjoint v∗ is then also extendable. We have seen such extendable kernels
in the preceding remarks and examples. For E = D ′(X) and Ē′ = D(X),
the differential operators with C∞ coefficients are extendable; for X = Rn, the
convolution with a distribution with compact support is extendable (the kernel
of an extendable map in the theory of kernels is also called “compact regular”).
For E = S ′ and Ē′ = S , the Fourier transformation is extendable, it is even
an isomorphism. If v is Hermitian, i.e. v∗ = v, it suffices that it is weakly
continuous Ē′ → Ē′, or extends to a weakly continuous map E → E, for it to
have both properties together, and so for it to be extendable.

Let v be an extendable kernel, and w any kernel. Then we can compose v
and w, and consider vw: Ē′ w→ E

v→ E, and of wv: Ē′ v→ Ē′
w→ E, as new

kernels. More generally, we can compose, in any order, several kernels, if all of
them, except at most one, are extendable; this law of composition is associative.

If v is extendable, we say that w is a left-inverse of v (resp. right-inverse) if
wv = I (resp. vw = I), where I is the inclusion of Ē′ in E, extendable to the
identity Ē′ → Ē′ and E → E. If w is a left- and right-inverse of v, it is said to
be a bilateral inverse, or simply an inverse. If w and v are Hermitian and if w is
a left- or right-inverse of v, it is a bilateral inverse. Let us note that L (Ē′;E)
is not an algebra, and that a kernel v can have infinitely many inverses. If it
(53)More generally, if P (D) is a differential operator with constant coefficients, we have, for
every bounded open subset X of Rn, an inequality ‖φ‖L2 5 const.‖P (D)φ‖L2 ; this type of
inequalities, well known for a long time for some particular operators, has been introduced in
general by Malgrange [1], and generalised by Hörmander [1].
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has an extendable inverse, it is a weak isomorphism from Ē′ onto Ē′ and from
E onto E, and then it is its only inverse. If, for example, E = D ′ and Ē′ = D ,
and if v is a C∞ differential operator, a (left- or right-) inverse is also called a
(left- or right-) elementary kernel of v. It is well known that, if it exists, there
are in general infinitely many of them.

Proposition 31. Let H be a Hilbert subspace of E, with extendable kernel H.
For H to be normal, it is necessary and sufficient that H has an inverse L = 0;
in this case, there are in general infinitely many inverses, and the kernel H̄ ′ of
H̄ ′ is the smallest non-negative kernel that is an inverse of H.

We have L = H̄ ′+N , where H̄ ′ and N are alien; and we have HN = NH =
0. The Hilbert subspace L with kernel L is a direct sum of two closed orthogonal
subspaces, N = L ∩H−1({0}), and H̄ ′, the closure of Ē′ in L . The operator
HH̄ ′ is the identity on H , and the operator H̄ ′H is the orthogonal projection
of L onto H̄ ′ (so the identity on H̄ ′).

Proof. 1◦) Let us suppose that H is normal. The extension Ĥ : H̄ ′ → H
of H defined in Proposition 22b is nothing but H itself, assumed to be
extended to all of E (indeed, H and Ĥ are both weakly continuous from
H̄ ′ into E and coincide on Ē′, which is dense in H̄ ′). Then we have seen,
in Proposition 22b, that the kernel H̄ ′ of H̄ ′ extends to Ĥ : H → H̄ ′,
and that Ĥ and ˆ̄H ′ are inverses of each other: this implies that H̄ ′ is an
inverse of H in the sense given just before Proposition 31.

2◦) Conversely, let us suppose that H has an inverse L = 0. Let L be the
Hilbert subspace of E of kernel L. The image H(L ) of L under H has
HLH∗ = HLH = H as its kernel, by Proposition 21 applied to the weakly
continuous linear operator H from E into E, since HL = I (or LH = I).
So this image is the space H . As then Ē′ = HL(Ē′), and L(Ē′) ⊂ L ,
we have Ē′ ⊂ H(L ) = H , and by Remark 1 after Proposition 30, H is
indeed normal. [Let us remark that we see directly that Ē′ is dense in H :
because L(Ē′) is dense in L (Proposition 7), and H is continuous and
surjective from L onto H since H(L ) = H .] Proposition 21 moreover
says this: if N = (H−1{0})∩L , and if K is the orthogonal complement
of N in L , then HL(Ē′) = Ē′ is a dense subspace of K . Ē′ is also a
dense subspace of H̄ ′; we are going to see that, on Ē′, the norms induced
by K and H̄ ′ coincide. Indeed, by (4.4) applied to L and to Hē′ ∈ Ē′:∥∥ē′∥∥

K
=
∥∥ē′∥∥

L
=
∥∥LHē′∥∥

L
=
〈
LHē′, Hē′

〉1/2

E,E′
(10.12)

=
〈
HLHē′, e′

〉1/2
E,E′

=
〈
Hē′, e′

〉1/2
=
∥∥ē′∥∥

H̄ ′

by (10.6).
Then K and H̄ ′ coincide, as completions in E of Ē′ with respect to
the norm (10.12). As K is a subspace of L with respect to the induced
norm, we have H̄ ′ = K 5 L , so H ′ 5 L: H̄ ′ is the smallest non-negative
kernel that is an inverse of H. The rest of the statement is evident; HH̄ ′
is the identity on H by Proposition 22b; H̄ ′H is defined on L , and since
H(L ) = H and it is the identity on H̄ ′ and 0 on N , it is thus the
orthogonal projection of L onto H̄ ′.
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Remark 1. We knew before that H̄ ′ ∩ H−1({0}) = {0}, since H is an iso-
morphism from H̄ ′ onto H . Proposition 31 gives the general form of kernels
L = 0 that are inverses of H: L = H̄ ′ + N , with N = 0, HN = NH = 0, and
the general structure of corresponding Hilbert subspaces: L = H̄ ′ + N , with
N an arbitrary Hilbert subspace of H−1({0}) ⊂ E.

Remark 2. We must be careful of these “inverses” of H and remember that
L (Ē′;E) is not an algebra. H̄ ′ is an inverse of H, and H̄ ′H is equal to the
identity on D and on H̄ ′, but not on L ! In the same train of thought, we
could believe that the kernels L and N , like the kernel H̄ ′, extend to continuous
operators from H into L . This is not true: if N 6= {0}, L and N are never
continuous from Ē′ equipped with the topology induced by H in E.

If indeed one of the two were continuous, the other would also be continuous,
since L −N = H̄ ′ is continuous, from H onto H̄ ′. And then L and N would
extend, by continuity, to continuous linear maps from H into E, which is
quasi-complete. But NH is zero on Ē′, so N is zero on H(Ē′), and dense in H
(Proposition 7); so N would be zero on H . But then N(Ē′) ⊂ N(H ) would
also be {0}, and so it has to be dense in N .

Application to limit problems of Neumann type

We frequently pose problems of elliptic limits in the following way. We start
with a Hilbert subspace L of E = D ′(X), where X is an open subset of Rn. We
will assume that Ē′ is contained in L , with weakly continuous inclusion, but
not necessarily dense (and in fact, the most interesting cases are those where it
is not dense). For every l in L , the linear map e′ 7→ (l | ē′) is weakly continuous
on E′, so defines an element Hl of L with

(10.13) 〈Hl, e′〉 = (l | ē′)L .

H is a weakly continuous, hence continuous, linear map from L into E.
(This operator is, if we identify L with its anti-dual L̄ ′, the adjoint of the

inclusion of Ē′ in L ). We assume that H is a C∞ elliptic differential operator,
so an extendable operator in the sense defined on page 71. Then L defines a
limit problem relative to the elliptic operator H, as follows. We say that an
element l of L satisfies Neumann’s homogeneity condition relative to L if Hl
is in Ē′, and if we have

(10.14) 〈Hl, k̄〉 = (l | k)L for every k in L .

Then let ē′ ∈ Ē′. We say that an element l in L satisfying the homogeneity
condition (10.14) and

(10.15) Hl = ē′

is a solution of Neumann’s problem. It is simply equivalent to saying that we
have, for k ∈ L :

(10.16) 〈ē′, k̄〉 = (l | k)L , or 〈k, e′〉 = (k | l)L .

It is not difficult to show the existence and uniqueness of such an element l,
which we will denote by Lē′; L is called the Neumann kernel of Neumann’s
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problem defined by L . (10.16) becomes

(10.17) 〈k, e′〉 = (k | Lē′)L for every k ∈ L .

Let us interpret these results in terms of Hilbert subspace kernels. H is weakly
continuous from Ē′ into E, and trivially Hermitian and non-negative, because
(10.13) gives

(10.18) 〈Hē′, e′〉 =
∥∥e′∥∥2

L
.

So it defines a Hilbert subspace H of E; and by hypothesis H is extendable, so
we can apply the previous results. On Ē′, the norm Ē′

H̄ ′ defined in Equation
(10.6) is, by (10.17), nothing but the norm induced by L . So the conditions of
Proposition 30 are satisfied, H is normal, and the closure of Ē′ in L , which
is the completion of Ē′

H̄ ′ in E, is the anti-dual H̄ ′ of H . On H̄ ′, H is the
canonical isomorphism H̄ ′ → H ; its inverse H̄ ′, the kernel of H̄ ′, is also
called the Green’s kernel of H. Let N be the orthogonal complement of H̄ ′

in L ; on N , H vanishes by (10.13); so the space L = H̄ ′ + N has exactly
the form indicated in Proposition 31, and its kernel is an inverse of H. This
kernel is nothing but L, by the equality (10.17). We see thus that in reality, as
soon as L is given, the Neumann kernel L is immediately known, even before
any interpretation as a limit problem; it is the kernel of L . The property
L − H̄ ′ = N = 0 results from Proposition 31. Dirichlet’s problem is a special
case of Neumann’s problem, corresponding to L = H̄ ′.

For example, if D is the differential operator (4.11), H = H −s and H̄ ′ =
H s

0 (Dirichlet’s problem); Neumann’s problem (corresponding to the cancella-
tion of the normal derivatives on the boundary), corresponds to L = H s. We
thus retrieve what was stated on page 24.

Often, L is given as a Hilbert space, but we additionally give ourselves a
continuous Hermitian bilinear form B on L , which we take to be coercive, i.e.
such that

(10.19) B(l, l) = const.‖l‖2L .

And it is with respect to B and not (· | ·)L that we solve the problem. But
we remark that the initial Hilbert structure of L is uninteresting, and that B
defines an equivalent Hilbert structure, to which we apply the above.

Finally, if B is only a continuous sesquilinear form, not Hermitian but coer-
cive, i.e. satisfying

(10.20) ReB(l, l) = const. ‖l‖2L ,

we can solve the same Neumann’s problem relative to B. This time, the Neu-
mann kernel is the kernel of L , equipped with a “sesquilinear” structure (not
Hilbert, nor even Hermitian in the sense of §12), that is to say, the structure of
the form B. In this simple case, the kernel is defined as for a Hilbert structure.
We define a continuous linear map γ from L into L̄ ′;

(10.21) B(k | k) = (h | γk)L ,L̄ ′ .

The coercivity formula shows that γ is a monomorphism, because ‖γl‖ =
const.‖l‖L , but also that its adjoint, which again operates from L into L̄ ′,
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is a monomorphism, so it is an isomorphism from L onto L̄ ′; if θ is the inverse
isomorphism L̄ ′ → L , we define the kernel associated to (L ;B) by L = jθj∗,
and it is the Neumann kernel satisfying (10.17).

Finally, we will in general consider extending L to spaces that are larger
than Ē′. If F is a subspace of E, with weakly continuous normal inclusion, and
if L ⊂ F with a weakly continuous inclusion, we can confirm that L extends to
a weakly continuous linear map from F̄ ′ into L . For example, in the case cited
above, where L = H s, we can, if the boundary Ẋ of X is regular enough, take
F = H −1/2(54), and L operates continuously from H −1/2 into H s. On the
other hand, as we have indicated in Remark 2 after Proposition 31, for bounded
X, L never operates from H −s into H s.

§11. Applications in potential theory

Charges and potentials. Let X be an open subset of Rn and D = 0 a kernel:
D(X)→ D ′(X); so we have, ∀φ ∈ D : 〈Dφ, φ̄〉 = 0. D defines a Hilbert subspace
W of D ′(X); importantly, in what follows, we assume that W is normal. We
call it the space of charges of finite energy(55); it is the completion in D ′ of DD ,
equipped with the norm

(11.1) ‖Dφ‖W = 〈Dφ, φ̄〉1/2.

The square of the norm of a charge T ∈ W is called its energy. W̄ ′ = U is
called the space of potentials of finite energy ; it is also normal; its kernel G is
called the Green’s operator of D in X. We saw (Proposition 22b) that D and
G extend into the following operators, also denoted as D and G: U

D→ W and
W

G→ U , which are canonical isomorphisms between W and U = W̄ ′ that are
inverses of each other; the extended D is also called the charge operator and the
extended G the potential operator ; for a charge T ∈ W , GT is its potential; for
a potential U ∈ U , DU is its charge.

We have, for S ∈ W , T ∈ W , U ∈ U and V ∈ U ,

(11.2)


(S | T )W = 〈GS, T̄ 〉W̄ ′,W̄ = (GS | T )W̄ ′,W

(U | V )U = 〈DU, V̄ 〉W ,W ′ = (DU | V )W ,W̄ ′

(T | DU)W = (T | U)W ,W̄ ′ = 〈T, Ū〉W ,W ′ = (GT | U)U .

In potential theory, it is fairly common to start with D, then to find G, and then
to construct W from G as the completion in D ′ (Proposition 29) of D equipped
with the norm

(11.3) ‖φ‖W = 〈Gφ, φ̄〉1/2.

It is quite an illogical bidualisation, since W can be constructed by (11.1) with-
out knowing G, even without the existence of U and G, that is to say, without
W being normal. At the same time the relationship U = W̄ ′ goes unnoticed in
general.
(54)If X is a bounded open subset of Rn with a regular enough boundary, H s is normal if
and only if s 5 1/2. See Lions [1], Chapter II.
(55)For the notions of charges and potentials of finite energy, and their principal properties,
see, for example, Deny [1].
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Balayage. The balayage of T ∈ W on a closed subset F of Rn is the orthogonal
projection (in W ) TDF of T onto the closed subspace WF of W consisting of
distributions with support in F .

To have an interesting theory, we are in general obliged to make the following
supplementary hypothesis on the anti-duality between U and W :

(Supp) If U ∈ U and T ∈ W have supports without common points, and if
the support of T is compact, then (U, T )W̄ ′,W = 〈U, T̄ 〉W̄ ′,W̄ = 0.

As 〈U, T̄ 〉W̄ ′,W̄ is always defined by passing to the limit of 〈U, φ̄v〉D′,D for
the φv in D converging to T in W , this property will of course be a consequence
of the following:

Every T ∈ W with compact support is the limit in W of a sequence of
functions in D , with support in an arbitrary neighbourhood of the support of T .

We see that this property will in turn be a consequence of the approximation
property by regularisation(56), often satisfied by W .

Proposition 32. The potentials of T and its balayage TDF are equal in the in-
terior F̊ of F . If the hypothesis (Supp) is satisfied, two charges whose potentials
coincide in the neighbourhood of a compact set F have the same balayage on F .

Proof. The balayage TDF , the orthogonal projection of T onto WF , is charac-
terised by TDF ∈ WF and

(11.4) ∀R ∈ WF , (T | R)W = (TDF | R)W .

By setting R = φ ∈ D with support in F̊ , and by using the first formula in
(11.2), we see that GT and GTDF coincide on such functions φ so coincide in F̊ .
We see that we even have more: GT and GTDF have the same value on every
φ ∈ D with support in F .

If, moreover, F is compact and (Supp) is satisfied, and if GT = 0 in the
neighbourhood of F , GT and R have disjoint supports for R ∈ WF , so (GT |
R)W̄ ′,W̄ = 0, so (T | R)W = 0, and the balayage of T on F is zero; by difference,
we deduce the second part of the statement.

If F is compact, there exists T ∈ W whose potential GT is equal to 1 in the
neighbourhood of F ; it suffices to take φ ∈ D equal to 1 in the neighbourhood
of F , and then to see that φ ∈ U and T = Dφ give what we want. If (Supp) is
satisfied, the balayage TDF of T on F is independent of the choice of T , it is the
equilibrium distribution of F . Its potential is 1 in the interior F̊ of F .

Restriction to an open subset Y ⊂ X

Now let Y be an open subset of X. There exists a natural inclusion i :
D(Y )→ D(X); for φ ∈ D(Y ), iφ, also denoted φ, can be obtained by extending
φ by 0 in X ∩ Y c. The transpose ti and the adjoint i∗ are the operation of
restriction ρ : D ′(Y ) → D ′(X): for T ∈ D ′(X), ρT , also denoted as T , is its
restriction to the open subset Y of X. The kernel D also has a restriction ρD,
again denoted as D, to Y : for φ ∈ D(Y ), (ρD)φ = ρ(Dφ) = ρDiφ or i∗Diφ:

D(Y )
i→ D(X)

D→ D ′(X)
i∗→ D ′(Y ).

(56)Schwartz [3], page 8.
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Of course, ρD is again a non-negative kernel on Y , and defines a Hilbert subspace
of D ′(Y ) which is, by Proposition 21, nothing but the image i∗W = ρW of W
under the restriction ρ (but, as defined by ρD, it only depends on the restriction
of D to Y and not on the open set X on which D was initially defined; we also
denote by W (Y ) the space of charges of finite energy defined by D on Y ). A
distribution S of D ′(Y ) belongs to W (Y ) if and only if it is the restriction ρT
to Y of a distribution T of W , and moreover

(11.5) ‖S‖W (Y ) = inf
ρT=S

‖T‖W .

If we go back to Proposition 21, W is the direct sum of two orthogonal spaces:
WF = W ∩ ρ−1({0}), the set of charges with support in F = X ∩ Y c, and
W +
F = L , its orthogonal complement, the closure of DD(Y ) in W , the space

of charges whose balayage on F vanishes. Then ρ is an isometry from L onto
W (Y ), so that the infimum in (11.5) is a minimum: for S ∈ W (Y ), there exists a
unique T in W such that ρT = S and ‖T‖W = ‖S‖W (Y ), and it is characterised
by the fact that it is in L . If T ∈ W is such that ρT = S, and if TDF is its
balayage on F , T − TDF is the orthogonal projection of T on L , and we have

(11.6) ‖S‖2W (Y ) = ‖T − TDF ‖2W = ‖T‖ − ‖TDF ‖2W .

Since DD(Y ) ⊂ L , we have, for φ ∈ D(Y ),

(11.6b) ‖Dφ‖W (Y ) = ‖Dφ‖W .

The fact that W is normal in D ′(X) does not necessarily imply that W (Y ) is
normal in D ′(Y ). If φ ∈ D(Y ), iφ is in D(X) ⊂ D ′(X), and its restriction i∗iφ
is φ itself; as W is normal, iφ ∈ W , so φ = i∗iφ ∈ W (Y ). Thus D(Y ) is a
subspace of W (Y ), but not necessarily dense. The operator ρD thus does not
necessarily admit a theory of potentials in Y . D(Y ) is dense in W (Y ) if and
only if iD(Y ) ⊂ W has an orthogonal projection on L that is dense in L .

Case where D is a C∞ differential operator.

Henceforth, we restrict ourselves to this case (D is then extendable in D ′(X)
in the sense of the previous section on page 71). Then ρD is the same differential
operator restricted to Y , we denote it also by D and it is again extendable in
D ′(Y ). So (by Remark 1 after Proposition 30) W (Y ) is normal: D(D(Y )) ⊂
D(Y ) is dense in W (Y ) and D defines a theory of potentials in Y . We can
also see this by applying Proposition 31: ρG is a non-negative inverse of ρD
(for φ ∈ D(Y ), ρG · ρD · φ = ρ · GDφ = φ, ρD · ρG · φ = ρ · DGφ = φ), so
W (Y ) is normal. Moreover, Proposition 31 also shows that ρU is a direct sum
of two orthogonal closed subspaces: N = ρU ∩D−1({0}), the space of U ∈ ρU
satisfying DU = 0 in Y , and U (Y ) = W (Y )′, which is the space of potentials
of finite energy in Y , relative to the kernel D (and which only depends on the
restriction ofD to Y , and not on the open setX in whichD was initially defined,
nor on W or on U relative to X). This decomposition ρU = N + U (Y ) is
crucial: the space of potentials of D in Y is not the restriction to Y of the
space of potentials of D in X, it is smaller. If N is the kernel of N relative
to D ′(Y ), and G(Y ) the kernel of U (Y ), G(Y ) is the Green’s operator of D
for the open set Y ; it is not the restriction ρG = G of G to Y , but we have
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ρG = N + G(Y ). G(Y ) is the smallest non-negative inverse of D in Y . (11.6)
gives (since G : W → U and G(Y ) : W (Y ) → U (Y ) are isometries), for
φ ∈ D(Y ):

(11.7)

{
〈Gφ, φ̄〉 = ‖Gφ‖2U = ‖φ‖2W
〈G(Y )φ, φ̄〉 = ‖G(Y )φ‖2U (Y ) = ‖φ‖2W (Y ) = ‖φ‖2W − ‖φDF ‖2W .

By Proposition 31, we have DN = ND = 0; D ·G(Y ) is the identity on W (Y );
G(Y ) ·D is the orthogonal projection of ρU on U (Y ).

Since G is an isometry from W onto U , the orthogonal decomposition W =
WF + L gives an orthogonal decomposition U = GWF + GL . GWF is the
space of potentials U on X, satisfying DU = 0 in Y . In turn, we can decompose
this into an orthogonal sum U1 + U2, where U1 = U ∩ ρ−1({0}) is the set
UF of the potentials on X with support in F , or zeros in Y , and U2 is its
orthogonal complement in GWF ; ρ is an isometry from U2 onto N . Then
U = U1 + U2 + U3, where U3 = GL ; since L is the closure of D(D(Y ))
in W , U3 is the closure of D(Y ) in U , and the distributions of L and U3

have their supports in Ȳ . Moreover, ρ is an isometry from D(Y ) ⊂ U3 onto
D(Y ) ⊂ U (Y ): (for φ ∈ D(Y ), ‖φ‖2U = ‖φ‖2U (Y ) = 〈Dφ, φ̄〉) so, by continuous
extension, an isometry from U3 onto U (Y ).

These developments show that certain classical proofs of the symmetry or
positivity of the Green’s kernel G(Y ) from D into Y are awkward (and in
particular involve too many hypotheses): G(Y ), the kernel of W (Y )′ in D ′(Y ),
is Hermitian and non-negative.

Notice also that there is no symmetry between the roles of W and U , nor
between those of D and G: D is extendable, G is not. This is what makes ρW
normal while ρU contains D(Y ) but is not normal, so that W (Y ) = ρW and
U (Y ) 6= ρW ; likewise for φ ∈ D(Y ), ‖φ‖U (Y ) = ‖φ‖U , while ‖φ‖W (Y ) 6= ‖φ‖W
(Equation (11.7)) (but ‖Dφ‖W (Y ) = ‖Dφ‖W , (11.6b)).

Finally, Dirichlet’s problem with respect to D and Y is posed as follows.
Let us say that a potential U ∈ ρU is “zero on the boundary of Y ” if it is an
adherent point to D(Y ) in ρU , i.e. an element of U (Y ). Then, for T ∈ W (Y ),
U = G(Y )T is the unique solution of DU = T in Y , zero on the boundary. If
V ∈ ρU , the unique solution of DU = T , and equal to V on the boundary, is
V +G(Y ) · (T −DV ).

Let us compare these general results to those from Newtonian theory of
potentials, corresponding to D = −∆ + a, with ∆ Laplacian in Rn and a > 0.
Let us take X = Rn, and let us omit it throughout.

We find ourselves exactly in the situation of the Example on page 74; the

space W with kernel −∆ + a is
√
aL2 +

n∑
i=1

∂
∂xi

L2 = H −1 which is indeed

normal, and its anti-dual U is H 1, with the scalar product

(f | g)H 1 =

∫
Rn

afḡ +

n∑
i=1

∂f

∂xi

∂g

∂xi

 dx;(11.8)

‖f‖2H 1 =

∫
Rn

a|f |2 +

n∑
i=1

∣∣∣∣ ∂f∂xi
∣∣∣∣2
 dx.
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The kernel of U in D ′ is the Green’s operator G = Ga of −∆+a; −∆+a and Ga
are the reciprocal canonical isomorphisms between H 1 and H −1, with respect
to the norm (11.8) in H 1. The balayage is that defined in the classical theory
of potentials. Moreover, in this theory, there exist particular properties: we can
define the notion of the capacity of a set, and the notion of properties satisfied
almost everywhere in Rn, that is to say, except on a set of zero capacity; a
potential U ∈ U is a class of functions defined almost everywhere and pairwise
almost everywhere equal; the property (Supp) (page 75) is satisfied since H 1

has the approximation property by regularisation. Proposition 32 is extended
as follows: TDF is characterised by the fact that it has support in F , and that
its potential is equal to that of T almost everywhere on F ; two charges have the
same balayage on F if and only if their potentials coincide almost everywhere
on F .

Let us now have a look at what happens to the results for open subsets
of Rn in this case. The space W (Y ) relative to Y has the kernel −∆ + a in
D ′(Y ), so it is H −1(Y ), which is normal. But here, ρU = ρ(H 1); it is a
subspace of H 1(Y ), which coincides with H 1(Y ) (as sets but not with the
same norm) only if Y is regular enough. (For example, if the boundary of Y
has a compact hypersurface Σ of C∞-class, and if, at each point of Σ, Y is
only on one side of Σ. In the following, we will call this example the regular
case). It is the sum N + U (Y ) of two orthogonal closed subspaces, where N
is the space of a-harmonic functions (satisfying (−∆ + a)U = 0) of ρ(H ) and
U (Y ) = (H −1(Y ))′ = H 1

0 (Y ) (the closure of D(Y ) in H 1(Y )) equipped with
its usual norm (11.8) (with

∫
Y

instead of
∫
Rn). G(Y ) is the Green’s kernel of

−∆ + a in Y ; −∆ + a and G(Y ) are the reciprocal canonical isomorphisms
between H 1

0 (Y ) and H −1(Y ). U1 is the subspace of H 1(Rn) consisting of
functions that vanish on Y ; U1 +U2 is the subspace consisting of functions that
are a-harmonic in Y ; U3 = GL is the subspace of functions that are almost-
everywhere zero on F = Y c [T ∈ L if and only if its balayage on F vanishes,
i.e. if and only if its potential GT is almost everywhere zero on F ]. But the
arguments for Y can be applied to Ȳ c in the regular case. Then, just as U3, the
closure of D(Y ) in U , is the space of functions of H 1 almost everywhere zero
on F = Y c or also on Ȳ c, U1, the space of functions of H 1 that vanish on Y ,
is, in the regular case, the closure of D(Ȳ c) in H 1; and then, just as U1 + U2,
orthogonal to U3, is the space of functions of H 1 that are a-harmonic in Y ,
U2 + U3, orthogonal to U1, is, in the regular case, the space of functions of H 1

that are a-harmonic in Ȳ c.
We know that every function in H 1 has a trace on every hypersurface Σ

of C∞-class (it suffices to take its value almost everywhere on Σ): then, in the
regular case, H 1

0 (Y ) is the subspace of functions of H 1(Y ) with trace almost
everywhere zero on Σ, and also of functions which, extended by 0 to Y c, belong
to H 1(Rn).

It is also worthwhile to see the relationships between the norms in the two
spaces H 1(Y ) and ρ(H 1(Rn)). Let f ∈ H 1(Y ). Its norm in H 1(Y ) is given
by (11.8) with

∫
Y

instead of
∫
Rn . Its norm in ρH 1 is

(11.9)

∫
Rn

a ∣∣∣f̃ ∣∣∣2 +

n∑
i=1

∣∣∣∣∣ ∂f̃∂xi
∣∣∣∣∣
2
 dx


1/2
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where f̃ ∈H 1(Rn) is equal to f in Y , and orthogonal to U1 = H 1 ∩ ρ−1({0})
in H 1, i.e. it is in U2 + U3, so, in the regular case, a-harmonic in Ȳ c. We thus
always have

(11.10) ‖f‖ρH 1(Rn) =
∥∥∥f̃∥∥∥

H 1(Rn)
= ‖f‖H 1(Y ) ;

moreover, in the regular case, we always have >, unless f̃ = 0 in Ȳ c, i.e. if
f ∈H 1

0 (Rn).
Dirichlet’s problem indicated on page 78 is the classical Dirichlet’s problem

for T ∈ H −1(Y ), and U = G(Y )T is the unique function of H 1
0 (Y ) (i.e. in

the regular case, the unique function of H 1(Y ) with almost everywhere zero
trace on Σ) satisfying (−∆ + a)U = T . The f̃ of (11.9) is, in the regular case,
the extension of f in Rn, a-harmonic in Ȳ c, and taking the values of f on the
boundary Σ of Ȳ c (the exterior Dirichlet problem).

We can study the same problems with a = 0. But then W is only normal
in Rn for n = 3 (see Proposition 33 below). Moreover, when it is normal, W
is contained in H −1 but strictly smaller, and U contains H 1 but is strictly
larger. If we only consider X = Rn for n = 3 (or bounded X for any n, because
then W (X) is normal, see Proposition 34), all the results relative to a > 0
remain valid for a = 0; and, for Y bounded, we still have W (Y ) = H −1(Y ),
and U (Y ) = H 1

0 (Y ), with the norms (11.8) where
∫
Rn is replaced by

∫
Y
, and a

by 0 [it suffices indeed to apply the Corollary of Proposition 30, with ui = ∂
∂xi

and Hi = L2(Y ). The classical inequality, for bounded Y :

(11.11)
∫
Y

|φ|2dx 5 c(Y )

∫
Y

∣∣∣∣ ∂φ∂xi
∣∣∣∣2 dx

shows that (D(Y ))H (Y )′
(the ĒH̄′ of this Corollary) has a continuous inclusion

into D ′(Y ), and that the norm ‖·‖W (Y )′
is equivalent to the norm ‖·‖H 1(Y ) on

D(Y ), hence that the completion W (Y )′ = U (Y ) is H 1
0 (Y )].

We said above that, for D = −∆, W is only normal in Rn for n = 3. This
is a consequence of the following result:

Proposition 33. Let D be a differential operator with constant coefficients, of
type = 0. Let P = F (Dδ) be its associated polynomial, with P = 0. For the
space W with kernel D in D ′(Rn) to be normal, it is necessary and sufficient
that 1

P is locally integrable and tempered. In this case, if E is the elementary
solution of D defined by F̄ 1

P , the kernel of the space U of potentials is G = E∗,
i.e. φ 7→ E ∗ φ.

Proof. The operator D, as it has constant coefficients, is invariant under trans-
lations of Rn, operating on D ′(Rn) and D(Rn); so the space W , which is defined
by D in D ′(Rn), is also invariant under translations of Rn (invariance under an
automorphism, page 46).

1◦) Let us then suppose that W is normal. Its anti-dual W̄ ′ ⊂ D ′ is also invari-
ant under translations of Rn (we use here the fact that these translations,
operating on D and D ′, leave the inclusion I of D in D ′ invariant); so its
kernel G is a continuous linear map from D into D ′, commuting with the
translations of Rn, and so is a convolution φ 7→ E ∗ φ, with E ∈ D ′(Rn).
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By Proposition 28b, we necessarily have DE = δ; moreover, E is of pos-
itive type in the sense of Bochner, as a result of G being a non-negative
kernel: for every φ ∈ D , we have

(11.12) 〈E ∗ φ, φ̄〉 = 〈Gφ, φ̄〉 = 0.

The Fourier image of Dδ is a polynomial P , and the positivity of D im-
mediately implies that P = 0; FE is a measure µ = 0, and DE = δ
implies Pµ = 1, i.e. Pµ = dξ, the Lebesgue measure; so µ = 1

P dξ in the
complement of the manifold of the zeros of P ; this proves that 1

P is locally
integrable on Rn. And then, we necessarily have µ = 1

P dξ+ v with v = 0,
carried over by the manifolds of the zeros of P : µ must be tempered, and
so 1

P and v must also be tempered.

Let us remark that conversely, for every measure µ of this form, we have
Pµ = 1; so E = F̄µ is a distribution of type = 0 such that DE = δ,
and G : φ 7→ E ∗ φ is a non-negative kernel that is an inverse of D, so we
necessarily have v = 0, and E = F̄ 1

P , G = E∗.

2◦) Conversely, if 1
P is locally integrable and tempered, and if E = F̄ 1

P , G =
E∗ is a non-negative kernel that is an inverse of D, then by Proposition
31, W is normal.

Example. D = −∆, and P (ξ) = 4π2|ξ|2 (where |ξ| =

(
n∑
i=1

ξ2
i

)1/2

). Then

1
4π2|ξ|2 is locally integrable if and only if n = 3, and then it converges to 0 at
infinity, so is tempered: W is normal for n = 3. In this case, G = E∗ with

(11.13) E = F̄
1

4π2|ξ|2
=

1

(n− 2)Sn

1

|ξ|n−2
,

where Sn is the area of the unit sphere in Rn.

It is classical to use this kernel G for the theory of Newtonian potentials with
−∆. There are infinitely many non-negative inverses of −∆, of the form G+N ,
with N = 0 and ∆◦N = 0; Proposition 31 tells us why we have to take G itself,
the smallest, since we want U = W̄ ′, where W is normal. Let us now take
the operator −∆ in R2, for example. In the classical potential theory, there is
always some confusion as to how to define W ; this is because we try to define W
from G, the kernel of W̄ ′ (Proposition 29), which is an annoying bidualisation
when W̄ ′ does not exist as a subspace of D ′! In practice, W does still exist, as a
space associated to −∆, but it is no longer normal, D 6⊂ W . Let us see what is
going on. FW has multiplication by P = 4π2|ξ|2 as its kernel. So (Proposition
22) FW = 2π|ξ|L2. Let φ ∈ D(Rn) and φ̂ = Fφ. Then φ̂ ∈ 2π|ξ|L2 equals
φ̂(ξ)
|ξ| ∈ L

2, where φ̂(0) = 0 (taking into account that φ̂ is analytic and is in L2),
or
∫
Rn φ(x)dx = 0: W ∩ D is the subspace of D consisting of functions that

integrate to 0, which is a hyperplane in D .

Proposition 34. Let D be a differential operator with constant coefficients
of positive type on Rn. For every non-empty bounded open subset X of Rn,
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the Hilbert subspace W (X), with kernel D relative to D ′(X), is normal; more-
over, U (X) ⊂ L2 ⊂ W (X). Let D′ be a differential operator with constant
coefficients; let P = F (Dδ) and P ′ = F (D′δ). For D′U (X) ⊂ W (X), it is
necessary and sufficient that P ′ is weaker than P in the sense of Hörmander(57).

We will prove this Proposition at the same time as the others in a later study
on Hilbert spaces associated to differential operators of type = 0.

But this Proposition suffices to show that there exist theories of potentials
and Dirichlet’s problems for bounded open subsets of Rn, for differential op-
erators very far from being elliptic: thus �2, where � is the wave operator
∂2

∂x2
n
− ∂2

∂x2
1
...− ∂2

∂x2
n−1

, is hyperbolic, and its Cauchy problem is well-posed (and
has classical solution) with respect to the time variable t = xn; however, it is
of type = 0 (like every operator D∗D), so it has a Dirichlet problem for every
bounded open set. The key is to know how to interpret it well; the spaces W
and U give the correct solution of the problem.

§12. Hermitian subspaces and associated Hermitian kernels

Let us return to the results at the end of §8. The cone Hilb(E) associated to a
locally convex, quasi-complete Hausdorff topological vector space E is regular,
so generates a vector space over R, which we will denote by Hilb(E)⊗R (strictly
speaking, this is not a tensor product!). An element of Hilb(E) ⊗ R can be
written, in infinitely different ways, as a formal difference H1 − H2 of two
Hilbert subspaces of E, with the equivalence relation H1 −H2 ' H3 −H4 if
H1 + H4 = H2 + H3. Likewise, L +(E) generates a vector space over R, which
we denote by L +(E)⊗R, and which is the space of Hermitian kernels relative
to E, which can be expressed as a difference of two non-negative elements. The
isomorphism Hilb(E)→ L +(E) extends in a unique manner to an isomorphism
Hilb(E)⊗R→ L +(E)⊗R, which is again functorial. Our goal, in this section,
is to express the elements of Hilb(E)⊗R as vector subspaces or classes of vector
subspaces of E.

A pre-Hermitian space H is a (non-topological) vector space over C equipped
with a Hermitian form denoted by (h, k) 7→ (h | k)H . If this form is non-
negative, it is a pre-Hilbert space; it can then be equipped with a norm and
hence a topology, for which the Hermitian form is continuous; no such ana-
logues exist here. The form defines a linear map γ from H into its algebraic
anti-dual H̄ ∗, given by

(12.1) (h | k)H = (h | γk)H ,H̄ ∗ .

We say that h and k are orthogonal if (h | k) = 0, which is equivalent to
(k | h)H = 0 because the form is Hermitian. The form is said to be non-
degenerate if the orthogonal complement of H is {0}, in other words, if γ is
injective.

Let, moreover, H be a vector subspace of E. which we recall is a locally
convex, quasi-complete Hausdorff topological vector space. The inclusion j :
H → E has an adjoint j∗ : E∗ → H̄ ∗, so a fortiori Ē′ → H̄ ∗. An admissible
pre-Hermitian subspace of E is a vector subspace H of E with a non-degenerate
(57)Hörmander [1], 2nd Part, Chapter III, 3.3, page 71.
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Hermitian form on H , denoted (· | ·)H , such that we have

(12.2) j∗(Ē′) ⊂ γH .

For example, let K is a Hilbert subspace of E, with associated kernel K. Let
H be a dense pre-Hilbert subspace of K , with the induced structure. Let i and
k be the inclusions H

i→ K and K
k→ E, such that the inclusion j : H → E

is ki. The map γK relative to K is an isomorphism from K onto K̄ ′; the map
γH relative to H is i∗γK i; but, as H is dense in H , H and K have the
same dual, so that i∗ : K ∗ → H̄ ∗ is the identity K̄ ′ → H̄ ′; if we identify K̄ ′

and H̄ ′, i∗γK i is simply the restriction of γK to H . The kernel K associated
to K in E is θk∗ where θ is γ−1

K : K̄ ′ → K ; the condition (12.2) relative
to H here translates to k∗(Ē′) ⊂ γK (H ), where K̄(Ē′) ⊂ H : a pre-Hilbert
subspace H of K , with the induced structure, is admissible if and only if it
contains K(Ē′). We will later define a kernel associated to each admissible pre-
Hermitian subspace: all the H such that K(Ē′) ⊂H ⊂ K will have the same
kernel K.

A priori, it may appear annoying to introduce such a large family of sub-
spaces, thus taking away any hope of having a bijective correspondence between
subspaces and kernels; but we will see later that, even with the most restrictive
sense which we can give to the Hermitian subspaces, such a bijective correspon-
dence does not exist; and the category defined here will turn out to be very
practical for the statements and proofs.

If, then, H is an admissible pre-Hermitian subspace of E, and if θ is the
map γ(H ) → H which is inverse of the bijection γ : H → γ(H ), we can
define H = jθj∗ by the hypothesis j∗(Ē′) ⊂ γ(H ). H is a linear map from Ē′

into E, and even from Ē′ into H , if, as already done on page 19, we adopt the
convention of identifying jθj∗ and θj∗.

Proposition 35. Let H be an admissible pre-Hermitian subspace of E. The
map H : Ē′ → E defined above by jθj∗ is a Hermitian kernel. It satisfies (4.2)
and (4.3). Conversely, if H is a vector subspace of E, if it is equipped with a
non-degenerate Hermitian form, and if there exists a linear map H : Ē′ → H
satisfying (4.2), H is an admissible pre-Hermitian subspace of E, and H is its
kernel. Finally, every Hermitian kernel H : Ē′ → E is associated to at least
one admissible pre-Hermitian subspace.

Proof. (4.2) can be shown as in Proposition 6. We deduce (4.3) from it, so H
is Hermitian, and thus is a Hermitian kernel by Proposition 4.

Conversely, let H ⊂ E, equipped with a non-degenerate Hermitian form
and let us suppose that there exists a map H : Ē′ → E satisfying (4.2).

The relationship (h | Hē′)H = (h | γHē′)H ,H̄ ′ = (jh | ē′)E,Ē′ = (h |
j∗ē′)E,Ē shows that γH = j∗, so j∗(Ē′) ⊂ γ(H ), so H is an admissible pre-
Hermitian subspace of E. Then, as γ is injective, γH = j∗ gives H = θj∗, and
H is the kernel of H in E.

Finally, let H be a Hermitian kernel: Ē′ → E. Then H = H(Ē′) is a vector
subspace of E, equipped with the Hermitian form (4.3) (we saw in the proof of
Proposition 16 that this form is well-defined). This form is non-degenerate: if
Hē′ is such that, for every f ′ ∈ E′, (Hē′ | Hf̄ ′)H = 0, we also have 〈He′, f ′〉 = 0
so Hē′ = 0. For e′ ∈ E′, j∗ē′ is the antilinear form on H defined by the
restriction to H of the antilinear form defined by ē′ on E; the equality (4.2)
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then shows that γHē′ = j∗e′, so we have here exactly j∗(Ē′) = γ(H ); H(Ē′)
is an admissible pre-Hermitian subspace and then (4.2) precisely shows that
its associated kernel is H. (HĒ′) is the smallest (in the set-theoretic sense)
admissible pre-Hermitian subspace of E with the given Hermitian kernel H.

Now let H be an admissible pre-Hermitian subspace of E, and u a weakly
continuous linear map from E into F ; let us try to define an admissible pre-
Hermitian image space u(H ). One could be tempted to say that, as a set, it
is the image of H under u; and then define a pre-Hermitian structure on this
image; but we will not be able to do this. On the contrary, let us go back to
the proof of Proposition 21. Let N = H ∩ u−1({0}); it is a vector subspace
of H . Let K be the orthogonal complement of N in H , with respect to the
Hermitian form of H . We do not necessarily have N + K = H . Let us then
consider the space u(K ) ⊂ F . The map u : K → F factorises as

K → K /(K ∩N )
u̇→ F, u̇ injective.

If we equip K with the restriction of the Hermitian form to H , we obtain a
potentially degenerate Hermitian form, whose kernel (the subspace orthogonal
to the whole space) is K ∩N . Then, on the quotient K /(K ∩N ), we can
define a non-degenerate Hermitian form (it is something we could not have done
if we had taken H instead of K ). We can transport it onto u(K ) under u̇,
which is thus equipped with a non-degenerate Hermitian form; for x, y ∈ K ,
we have

(12.3) (x | y)H = (x | y)K = (u(x) | u(y))u(K ).

Then let h = u(k) ∈ u(K ) and f ′ ∈ F ′;

〈h, f ′〉F,F ′ = (h | f̄ ′)F,F̄ ′ = (u(k) | f̄ ′)F,F̄ ′(12.4)

= (k | u∗f̄ ′)E,Ē′ = (k | Hu∗f̄ ′)H .

If k ∈ N , h = u(k) = 0, so all these quantities vanish; so Hu∗f ′ is orthogonal
to N in H , i.e. it is always an element of K , whatever f ′ is. The last scalar
product in (12.4) is thus a scalar product in K , and then (12.3) shows that it
is equal to

(12.5) 〈h, f ′〉F,F ′ = (u(k) | uHu∗f̄ ′)u(K ) = (h | uHu∗f̄ ′)u(K ).

Then Proposition 35 shows that u(K ) is an admissible pre-Hermitian subspace
of F , with associated kernel uHu∗. It is u(K ) that we will call the image of
H under u, and we will denote it by ü(H ). It is contained in the set-theoretic
image u(H ), but is in general smaller, which is why we use a different notation
ü instead of u (whereas we could use u for Hilbert subspaces).

For example, it could happen that K = N (we will see this below on page
85), so the set u(H ) could be anything but the pre-Hermitian subspace ü(H )
of F would be {0}. If H is a Hilbert subspace of E, the ü(H ) that we just
defined coincides with u(H ) of §8. If, in particular, E is a vector subspace of
F , equipped with a finer topology than the induced topology, every admissible
pre-Hermitian subspace of E is a fortiori an admissible pre-Hermitian subspace
of F .
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For an admissible pre-Hermitian subspace H of E, and a real scalar λ, we
will define λH as {0} if λ = 0, and if λ 6= 0, as the same space H equipped
with a new Hermitian form, obtained by multiplying the old one by 1

λ . If H is
the kernel of H , that of λH is λH.

Finally, let H1 and H2 be two admissible pre-Hermitian subspaces of E,
with associated kernels H1 and H2. Then, H1×H2 = H1⊕H2, equipped with
the Hermitian form ((x1, x2) | (y1, y2))H1⊕H2

= (x1 | y1)H1
+ (x2 | y2)H2

, is
trivially an admissible pre-Hermitian subspace of E ×E. But (x, y)→ x+ y is
a continuous linear map Φ from E × E into E; the image Φ̈(H1 ⊕H2), in the
sense of the image ü(H ) in the preceding pages, will be called the admissible
pre-Hermitian subspace H1+̈H2, the sum of H1 and H2. We obtain it as
follows. The kernel N of Φ in H is the set of (k1, k2) ∈ H1 ⊕H2 such that
k1+k2 = 0. Let K be the orthogonal complement of N ; the points (H1ē

′, H2ē
′)

with e′ ∈ E′ are in K (see the proof of Proposition 12). Then the restriction
to K of the Hermitian form of H1 ⊕H2 has kernel K ∩ N , and so defines
a non-degenerate Hermitian form on K /(K ∩N ); the map Φ passes to the
quotient: K /(K ∩N )

Φ•→ E, and H1+̈H2 is Φ•(K /(K ∩N )) = Φ(K ), with
the transported Hermitian form. The proof on page 13 shows that, if H1 and H2

are Hilbert subspaces of E, the definition given here for H1+̈H2 gives again the
old definition of H1+H2. The adjoint of Φ : (e1, e2) 7→ (e1+e2) from E×E into
E is Φ∗ : ē′ 7→ (ē′, ē′) from Ē′ into Ē′×Ē′ (diagonal map); the kernel associated
to H1 ⊕ H2 in E × E is (H1, H2) : (ē′1, ē

′
2) 7→ (H1ē

′
1, H2ē

′
2); so the kernel

associated to H1 + H2 in E is Φ ◦ (H1, H2) ◦Φ∗ = H1 +H2 : ē′ 7→ H1ē
′+H2ē

′.
We could also have directly repeated the proof of Proposition 12.

Just as ü(H ) can, as a set, be smaller than u(H ), H1+̈H2 can be smaller
than H1 + H2. Let us take, for example, H1 = H and H2 = −H . Here,
the kernel N of the map Φ is the set of (h,−h) ∈H ⊕ (−H ). Its orthogonal
complement K is N itself, because ((k1, k2) | (h,−h))H ⊕(−H ) = ((k1 + k2) |
h)H vanishes if and only if k2 = −k1. Then, the set H + (−H ) is H , while
H +̈(−H ) = {0}.

The sum H1+̈(−H2) will also be denoted H1−̈H2, or even H1−H2, as the
ambiguity with the set-theoretic difference is hardly problematic. If H1 and H2

have intersection {0}, then N = {0}, K = H1 ⊕H2 and H +̈H2 is nothing
but the vector subspace H1 + H2 of E, with the Hermitian form given by the
direct sum of the forms given on H1 and H2; H1 and H2 are orthogonal in
H1+̈H2. In this case, we will also write H1 + H2 instead of H1+̈H2.

We should beware of thinking that multiplication by scalars and image under
a map possess good properties that we expect of them. For example, addition,
which is commutative, is not associative: (H1+̈H )+̈H3 6= H1+̈(H2+̈H3).
This is why it is necessary now to establish an equivalence relation between
admissible pre-Hermitian subspaces of E. We will write H1 'H2 if H1−H2 =
{0} (we then have H 'H , as we just saw above).

Proposition 36. The three operations (λ,H ) 7→ λH , (H1,H2) 7→ H1 and
H 7→ ü(H ) are assumed to be defined as above. Then H1 'H2 if H1−H2 =
{0} is an equivalence relation; if H1 and H2 are the kernels associated to H1

and H2 relative to E, we have H1 ' H2 if and only if H1 = H2. The three
operations defined above pass to the quotient by the equivalence relation: the
set Herm(E) of equivalence classes of admissible pre-Hermitian subspaces of E,
equipped with the laws of multiplication by real scalars and addition, is a vector
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space over R. The map H • 7→ H (where H • is the class to which H belongs,
and H is the kernel associated to H ) is a linear bijection from Herm(E) onto
the vector space (over R) L h(E) of Hermitian kernels Ē′ → E. Finally, if u
is a weakly continuous linear map from E into F , H • 7→ (ü(H ))• is a linear
map from Herm(E) into Herm(F ), associated by this bijection to the linear map
H 7→ uHu∗ from L h(E) into L h(F ). The functors Herm and L h from the
category of locally convex, quasi-complete Hausdorff topological vector spaces
(over C) into the category of vector spaces over R are isomorphic.

Proof. The kernel associated with H1 −H2 is H1 − H2. This admissible pre-
Hermitian subspace of E is {0} if and only if its associated kernel is zero.
[Obviously, the kernel of {0} is zero. Conversely, if an admissible pre-Hermitian
subspace H has 0 as its kernel, we have jθj∗ = 0; but j and θ are injective,
so j∗ = 0, so j = 0 and H = {0}.] So we indeed have H1 ' H2 if and
only if H1 = H2. This immediately shows that it is an equivalence relation;
moreover, we see that this equivalence relation is compatible with the operations
under consideration, which thus pass to the quotient. Furthermore, the map
H • 7→ H is a bijection from the quotient Herm(E) onto the vector space L h(E)
(Proposition 35); this bijection respects addition and multiplication by real
scalars, so Herm(E) is also a vector space over R and its bijection onto L h(E)
is linear. The end of the Proposition is obvious (see the end of §8).

Proposition 37. Let H be an admissible pre-Hermitian subspace of E. Let us
assume that there exists a Hilbert structure on H , with respect to which the given
Hermitian form is continuous. Then H admits a decomposition H = H1−H2,
where H1 and H2 are admissible pre-Hilbert spaces, with trivial intersection
(so orthogonal in H ). We thus also have a decomposition of its kernel, H =
H1 −H2, where H1 and H2 are positive kernels.

Proof. Let us denote by ((· | ·)) the Hilbert scalar product, assumed to exist on
H , and (· | ·)H the given Hermitian form, assumed to be continuous. We then
know that there exists a continuous Hermitian operator A on H , such that

(12.6) (h | k)H = ((h | Ak)).

By the spectral decomposition A = A+ − A−, we can find two closed vector
subspaces H1 and H2 of H , with H1 ∩H2 = {0} and H = H1 + H2, that
are orthogonal with respect to ((· | ·)), and stable under A and so orthogonal
with respect to (· | ·)H . Moreover, we have A = 0 on H1, and hence (· |
·)H = 0 on H1, hence A is positive definite, because it is non-degenerate on
H and hence on H1 and H2; and A is negative definite on H2. Let us show
that H1 and −H2 are admissible pre-Hilbert subspaces. The decomposition
H = H1 ⊕ H2 gives the dual decomposition H̄ ∗ = H̄ ∗

1 ⊕ H̄ ∗
2 , and, since

they are orthogonal with respect to (· | ·)H , γ = γ1 + γ2, where γ1 and γ2 are
associated with the restrictions of the Hermitian form to H1 and H2. Then
γ(H ) = γ1(H1)⊕ γ2(H2). If i1 is the inclusion H1 →H , i∗1 is the projection
pr1 : H̄ ∗ → H̄ ∗

1 ; the inclusion J1 : H1 → E is ji, so J∗1 is i∗1j∗ = pr1 ◦
j∗. Then, from j∗(Ē′) ⊂ γ(H ) = γ1(H1) ⊕ γ2(H2), we immediately deduce
J∗1 (Ē′) = pr1j

∗(Ē′) ⊂ γ1(H1): H1 is admissible, and likewise for −H2; and
we indeed have H = H1 −H2. We deduce from this that, for the kernels,
H = H1 −H2.
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Remark 1. The conditions given in the statement are therefore sufficient for
H to admit a decomposition into H1 −H2; they cannot be necessary, because
of the too large generality of admissible subspaces. Nevertheless, we will remark
that the category of subspaces satisfying these conditions are stable with respect
to the three operations; it is obvious for multiplication by reals, and, if we show
it for the image ü under u : E → F , it will also be true for the addition +̈.
Yet, if we return to the developments on pages 84, we see that, with respect
to the Hilbert structure ((· | ·)) of H , K and N are closed since (· | ·)H

is continuous; so the Hermitian form (· | ·)H on K is continuous, with kernel
K ∩N , and as a consequence, the non-degenerate Hermitian form on K /(K ∩
N ) is continuous with respect to the quotient Hilbert structure. We could
therefore have taken these properties stated in Proposition 37 as the definition
of an admissible subspace, then pass to the quotient by the same equivalence
relations; the quotient obtained would have been the vector subspace (over R) of
Herm(E) produced by the cone Hilb(E) (we can identify Hilb(E) with its image
in Herm(E); indeed, passing to the quotient H 7→H • is injective for the set of
Hilbert subspaces, since H → H is injective), since its image in L h(E) under
the canonical bijection H • 7→ H is the vector subspace of L h(E) generated by
L +(E).

Remark 2. Let H have the properties of the statement of Proposition 37;
since H = H1 −H2, we also have a decomposition H ' Ĥ1 − Ĥ2, where Ĥ1

and Ĥ2 are two Hilbert subspaces with kernels H1 and H2; these spaces are not
necessarily H1 and H2 themselves, which are only pre-Hilbert. We therefore do
not have H = Ĥ1−Ĥ2. In certain particular spaces, Herm(E) and L h(E) are
generated by Hilb(E) and L +(E). This is the case, for example, if E admits a
Hilbert structure. Indeed, in this case, we can identify Ē′ with E; a Hermitian
kernel H is then a continuous Hermitian operator from E into E, and it is
always the difference of two non-negative kernels. But this represents, without
doubt, a very exceptional case; in any case, we will later (page 88) give examples
showing that this is not always the case.

Proposition 38. Let H be a Hermitian kernel: Ē′ → E. For it to be the
difference of two non-negative kernels, it is necessary and sufficient that it is
upper-bounded by a non-negative kernel, in other words, that there exists a kernel
L = 0 such that

(12.7)
∣∣〈Hē′, f ′〉∣∣ 5 〈Lē′, e′〉1/2〈Lf̄ ′, f ′〉1/2

or

(12.8)
∣∣〈Hē′, e′〉∣∣ 5 〈Lē′, e′〉.

If this is the case, H is the difference of two non-negative alien kernels.

Proof. (12.7) and (12.8) are equivalent, by the Lemma on page 30. If H =
H1 − H2, we do have these inequalities with L = H1 + H2; conversely, (12.8)
implies that the kernel L−H is non-negative, and then H = L− (L−H).

Let H = H1 −H2, and L = H1 + H2; let L be the Hilbert subspace of E
with kernel L. We have H1 5 L; so H1 is the kernel of a Hilbert subspace H1

of L (Proposition 13). Let us use Proposition 9b. We have H1 = A1L, where
A1 is a non-negative continuous Hermitian operator from L into itself; likewise
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H2 = A2L. So H = AL, with A continuous and Hermitian from L into L .
The spectral decomposition then gives a decomposition A = B1 − B2, where
B1 and B2 are non-negative continuous alien Hermitian operators in L . B1

and B2 define Hilbert subspaces in L , B1 =
√
B1L and B2 =

√
B2L , with

intersection {0}, that is to say, they are alien (Proposition 16).
The kernels of B1 and B2 in E are B1L and B2L, so they are alien; and

H = AL = B1L−B2L in L +(E).

Corollary 1. For a Hermitian kernel H to be the difference of two non-negative
kernels, it is necessary that the Hermitian form H which it defines on E′ × E′
(Equation (3.5)) is strongly continuous.

Proof. It suffices to apply the Corollary of Proposition 10.

Corollary 2. For every Hermitian kernel H to be the difference of two non-
negative kernels, it is necessary that every separately weakly continuous sesquilin-
ear form on E′ × E′ is strongly continuous.

Proof. It is indeed necessary, by Corollary 1, that, for every Hermitian kernel
H, H̃ is strongly continuous; the same is also necessary for every kernel H,
because it is of the form A + iB, where A and B are Hermitian kernels. But
every separately weakly continuous sesquilinear form on E′×E′ is H̃ of a kernel
H.

Example. Let E = D ′, the space of distributions on Rn. Then Ē′ = D . We
know that there exist separately continuous bilinear forms on D ×D , which are
not continuous (D ⊗ε D is different from D ⊗π D , and does not have the same
dual(58)). So there are Hermitian kernels relative to D ′ which are not differences
of two non-negative kernels.

In situations where we use this Corollary, we will only have examples for
which Ē′ is not a Fréchet space (with respect to the strong topology); because
if Ē′ is a Fréchet space, every separately weakly continuous sesquilinear form
on E′ × E′ is separately strongly continuous, and so strongly continuous.

However, there are Banach spaces E with Hermitian kernels that are not
bounded from above by non-negative kernels. Indeed, letG be a reflexive Banach
space that does not admit a Hilbert structure. Let E = G ⊕ Ḡ′. Then Ē′ =
Ḡ′ ⊕ G. There exists a natural Hermitian kernel H, the map (x̄′, y) 7→ (y, x̄′);
it is indeed Hermitian, because 〈(y, x̄′), (x′, ȳ)〉 = 2Re〈x′, y〉 is real. If H was
the difference of two non-negative kernels, there also exist non-negative alien
kernels H1 and H2 such that H = H1 −H2, and we would have E = H(Ē′) =
(H1 − H2)(Ē′) ⊂ H1(Ē′) + H2(Ē′), such that the Hilbert subspaces H1 and
H2 with kernels H1 and H2 would satisfy H1 ∩H2 = {0} and H1 + H2 = H
as sets. E would then admit a Hilbert structure, namely H1 + H2, hence the
closed subspace G would also admit a Hilbert structure, which contradicts the
hypothesis.

Proposition 38 leads us to introduce a stricter notion. A vector space H
(over C) will be called a Hermitian space, if it is equipped with a Hermitian
form (· | ·)H with the following property: there exists a decomposition of H
into a direct sum H1 + H2, where H1 and H2 are orthogonal, such that, with
(58)Schwartz [2], pages 115-116.
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respect to the restriction of the Hermitian form, H1 is a Hilbert space, and with
respect to the restriction of the negative of the Hermitian form, H2 is a Hilbert
space.

We therefore have H = H1 − H2, where H1 and H2 are alien Hilbert
spaces. As we saw on page 86, we have γ = γ1⊕ γ2 · γ(H ) = γ1(H1) + γ2(H2).

It can then obviously be equipped with the product topology H1 × H2,
with respect to which it is complete, and admits a Hilbert structure (namely,
H1 + H2). The Hermitian form is continuous with respect to this topology.

The anti-dual of H , with respect to this topology, is γ(H ) ⊂ H̄ ∗, and γ is
an isomorphism from H onto H̄ ′. H1 and H2 are not given in the structure, we
only assume their existence, and there are in general infinitely many possibilities
for H1 and H2. On the other hand, the topology defined on H is intrinsic,
because it is a Banach topology, and the anti-dual with respect to this topology
is known, it is γ(H ). It is these Hermitian spaces which generalise best the
Hilbert spaces.

A Hermitian subspace H of E is then a vector subspace equipped with the
structure of a Hermitian space, such that the inclusion H → E is continuous. It
is then indeed an admissible pre-Hermitian subspace, because its Hermitian form
is not degenerate, and j∗(Ē′) ⊂ H̄ ′ since j is continuous, and γ(H ) = H̄ ′.
Moreover, H(Ē′) is then dense in H since j∗(Ē′) is dense in H̄ ′ (as j is
injective), and θ = j−1 is an isomorphism from H̄ ′ onto H . Proposition 38
then allows us to state:

Corollary 3. The vector subspace of Herm(E) generated by the cone Hilb(E)
is that of equivalence classes of Hermitian subspaces of E.

Proof. If H is a difference of two non-negative kernels, there also exist non-
negative alien kernels H1 and H2, such that H = H1 −H2. If H1 and H2 are
Hilbert subspaces with kernels H1 and H2, H is the kernel of the Hermitian
subspace H1 −H2.

Remark. It could appear that Hermitian spaces are a good notion to introduce
from the beginning. But:

1◦) As we will see later (§13), two distinct Hermitian subspaces can have
the same associated kernel. An equivalence relation is therefore again
inevitable.

2◦) Hermitian subspaces do not form a stable category with respect to the
three operations: if H is a Hermitian subspace of E, and u a continuous
linear map from E into F , ü(H ) is not necessarily Hermitian. (It is
only equivalent to some Hermitian subspaces, since its class is generated
by some classes of Hilbert subspaces; but it can then be equivalent to
infinitely many of them, without one of them having a particular reason
to be associated to it. Naturally, if u is injective, ü(H ) = u(H ) is
Hermitian). Likewise, the sum H1+̈H2 of two Hermitian subspaces is not
necessarily Hermitian (but it is Hermitian if H1 ∩H2 = {0}).

§13. Unicity and multiplicity of Hermitian kernels

A Hermitian kernel H ∈ L h(E), which is a difference of two non-negative
kernels, is said to have unicity if there exists a unique Hermitian subspace of E
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that admits it as its associated kernel; otherwise, it is said to have multiplicity.
For example, a kernel H = 0 has unicity, because the only Hermitian subspaces
with kernel H are Hilbert subspaces (indeed, the square norm of an element
of H(Ē′) is non-negative if H = 0, so, by continuity, the square norm of every
element of H is non-negative) and uniqueness follows from Proposition 8. (Let
us remark, on the other hand, that an admissible pre-Hermitian space which is
not pre-Hilbert, i.e. a space with a form that is not non-negative, can have a non-
negative kernel.) A Hermitian subspace is said to have unicity or multiplicity,
depending on whether its associated kernel has unicity or multiplicity.

Proposition 39. Let H1 and H2 be two Hermitian subspaces of E, with the
same kernel H. If H1 ⊂H2, these two Hermitian spaces coincide.

Proof. Let us equip H2 with the topology canonically defined by its Hermitian
structure; the inclusion j : H2 → E is continuous. If L1 and L2 are the kernels
of H1 and H2 relative to H2, considered as maps H̄ ′

2 → H2, and if H is
considered as a map Ē′ → H2, we have H = L1 and j∗ = L2j

∗. As j∗(Ē′) is
dense in H̄ ′

2 (since j is injective), we must have L1 = L2: H1 and H2 already
have the same kernel L in H2. But then they both contain L(H̄ ′

2 ), and, on this
subspace, have the same Hermitian form, defined by (4.3). As L, the kernel of
H2, is the isomorphism γ−1

2 : H̄ ′
2 → H2, L(H̄ ′

2 ) is H2, and H1 and H2 are
indeed the same vector space with the same Hermitian form.

This Proposition shows that, when we don’t have unicity, the diverse Hermi-
tian subspaces with the same kernel H do not satisfy relations of inclusion. This
already gives examples of non-Hilbert unicity: if one of the Hermitian subspaces
with kernel H, as a set, is E itself, then we have unicity.

Proposition 40. Let H be a Hermitian kernel, a difference H1−H2 of two non-
negative kernels, with the rank h of H2 finite. Then, for every decomposition
H = K1 −K2 into a difference of two non-negative alien kernels K1 and K2,
the rank of K is a natural number k 5 h. Moreover, the kernel H has unicity.

Proof. Let H1,H2,K1,K2 be Hilbert subspaces with kernels H1, H2,K1,K2.
H2 is of dimension h, since it has to be the closure of the subspace of finite
dimensionH2(Ē′), and so is equal to this subspace. We haveH1+K2 = H2+K1;
let us denote by L the kernel and L the corresponding Hilbert subspace. We
have H1 + K2 = H2 + K1 = L . So the codimension of K1 in L is at most h.
But K1 and K2 are alien, and both are contained in L , so dim(K2) 5 h, and
as a consequence k, the rank of K2, is at most h. The initial decomposition is
now meaningless. So let us assume, to continue, that H1−H2 and K1−K2 are
both decompositions into differences of two non-negative alien kernels. Then
the proof above gives that the rank of K2 is at most the rank of H2, but also
that the rank of H2 is less than the rank of K2, so these ranks are equal; let
k be their common value. Then H1 and K1 both have codimension at most
k in L , since their sums with K2 and H2 give L ; it is also at least k, since
they are alien to H2 and K2, so they have the same codimension k. But then
H1 and H2 are alien and dimH2 = codimH1, so H1 + H2 = L and likewise
K1+K2 = L . The Hermitian spaces have the same kernel H, and H1−H2 and
K1−K2 coincide as sets with L , and hence they are the same Hermitian space
by Proposition 39. As every Hermitian space H with kernel H is a difference
of two alien Hilbert spaces, the kernel H indeed has unicity.
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Thus the only kernels that can possibly have multiplicity are those that can
be written as H1−H2, where H1 and H2 are alien and non-negative, both with
infinite ranks. But the example which follows Proposition 39 shows that, even
in this case, H can have unicity.

Let us give an example of a kernel that has multiplicity. Let E be a Hilbert
space, and let A and B be two closed vector subspaces, such that A ∩B = {0},
and such that A + B is dense in E without being equal to E. Then their
orthogonal complements A × and B× in E with respect to the Hilbert structure
of E have the same property. Let us equip all of them with the Hilbert structure
induced by E. Let us identify Ē′ with E via the Hilbert structure. Let us denote
by A and B the kernels of A and B in E; those of A × and B× are I −A and
I −B, since A + A × = E. We thus have A−B = (I −B)− (I −A). However,
the Hermitian subspaces A −B and B× − A × do not coincide; indeed, the
corresponding sets are A + B and A × + B×; if they coincide, it would be a
vector subspace containing A and A ×, so E, but A + B 6= E. A−B is thus a
kernel with multiplicity relative to E, and A −B is a Hermitian subspace with
multiplicity. Hence the multiplicity can arise even when E is a Hilbert space.
It is well known that the above situation requires that A and B are of infinite
dimensions. The result would be the same if we simply assumed A ∩B = {0},
and A +B not closed. If, indeed, E1 is then the closure of A +B in E, A −B
has multiplicity in E1, and so in E. It is well known that, if A and B are
two closed alien vector subspaces of a Hilbert space, a necessary and sufficient
condition for A + B not to be closed is(59):

(T)

{
for any ε > 0, there exist a ∈ A and b ∈ B, with norm 1, such
that ‖a− b‖ 5 ε; or such that (a | b) = 1− ε.

When this condition (T) is satisfied, we say that A and B are in position (T)
(tangent). So if A and B are two alien closed vector subspaces of a Hilbert
space E in position (T), A −B has multiplicity in E.

Let us now move onto a more general situation whereby everything is trans-
formed by a continuous linear map. Let A and B be two Hilbert subspaces of
any E. Let us assume that we can find a structure of a pre-Hilbert subspace
H of E on the set A + B, inducing on A and B their Hilbert structures, but
in which they are in position (T). H is not complete, from above. Let us then
show that the Hermitian subspace A −B of E has multiplicity. Indeed, let Ĥ
be the completion of H ; the inclusion j of H in E extends to a continuous
linear map ̂ from Ĥ into E, which will not in general be injective. Let N
be the kernel of ̂, and K the orthogonal complement of N in Ĥ . Let p be
the orthogonal projection of Ĥ onto K . The image ̂(Ĥ ) is the Q-completion
ĤQ of H in E (Proposition 1b). The subspaces A and B are exactly in the
situation envisaged previously, with respect to Ĥ : closed, equipped with the
induced Hilbert structure, A ∩ B = {0}, A + B dense in but distinct from
the whole space Ĥ , since A and B are in position (T) in H , and so in Ĥ .
Since j is the identity on H = A + B, we have (A + B) ∩ N = {0}, and
(59)Saying that (T) is satisfied is indeed the same as saying that the map (a, b) 7→ (a, b)
from A + B into A ×B is discontinuous. But this is the same as saying that A and B are
not topologically complementary in A + B; according to Banach’s Theorem (Bourbaki [1],
Chapter I, §3, no3, Corollary 4 of Theorem 1), this is equivalent to saying that A + B is not
complete, or not closed in E.
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p is injective on A + B. Let us consider alien subspaces p(A ) and p(B) of
K , equipped with the transported Hilbert structures; we have ̂p(A ) = A and
̂p(B) = B. The Hilbert subspace “differences” K − p(A ) and K − p(B)
(in the sense of Proposition 14) are again alien in K . Indeed, if they were
not alien, there would exist a Hilbert subspace L of K , distinct from {0},
such that L 5 K − p(A ) and L 5 K − p(B); we would then also have
L + N 5 (K − p(A )) + N = (K + N ) − p(A ) = Ĥ − p(A ) (the two
Hilbert subspaces of Ĥ on either side of the first equality sign have the same
associated kernel, and so are indeed equal), and likewise L + N 5 Ĥ − p(B);
thence L 5 Ĥ − (p(A ) + N ) 5 Ĥ − A and L 5 Ĥ − B, which is im-
possible, since Ĥ − A = A × and H −B = B× are alien in Ĥ , as A + B
is dense. We can thus form the Hermitian space (K − p(B)) − (K − p(A ))
in K ; it has the same kernel as p(A ) − p(B) relative to K ; let us show that
these two Hermitian subspaces of K are always distinct. They indeed can only
coincide if there exists a Hermitian form on K which is non-negative on p(A )
and non-positive on K − p(A ); we then have p(A ) ∩ (K − p(A )) = {0}; but
then K = p(A ) + (K − p(A )) shows that p(A ) and K − p(A ) are two closed
orthogonal subspaces of K , with the induced Hilbert structure. As A has the
Hilbert structure induced by Ĥ and as p strictly reduces the norms of elements
of K c, this means that A ⊂ K ; likewise B ⊂ K . But then, as A + B is
dense in Ĥ , we have K = Ĥ and N = {0}; but then we know that A −B

and (Ĥ −B)− (Ĥ −A ) are distinct, since we have A ∩B = {0} and A + B

is dense in but distinct from Ĥ . This indeed shows that p(A ) − p(B) and
(K − p(B)) − (K − p(A )) are distinct Hermitian subspaces of K , with the
same kernel in K . Since, then, ̂ is injective on K , their images under ̂ have
the same properties in E; but the image of the first is A −B, so A −B has
multiplicity in E, as we had stated.

This will allow us to give large classes of kernels with multiplicity.
Let H and K be two non-negative kernels, with K = H; we will say that H

is K-compact if, denoting the corresponding Hilbert subspaces by H and K ,
the inclusion H → K is compact; or if the unit ball of H is relatively compact
in K (in which case it is compact, since it is weakly compact).

Proposition 41. Let H1 and H2 be two non-negative alien kernels of E, both
with infinite rank. Suppose that there exists a kernel K = 0 such that H1 and
H2 are K-compact; then the Hermitian kernel H1 −H2 has multiplicity.

Proof. Let K , H1 and H2 be the Hilbert subspaces of E associated with the
above kernels. Let i1 be the inclusion of H1 in K , which is compact; its adjoint
i∗1 is thus also compact from K into H1, identified with K̄ ′ and H̄ ′

1 ; a fortiori
the kernel A1 = i1i

∗
1 : K → K of H1 relative to K is compact. But A1 is

also non-negative and Hermitian; let us use its spectral decomposition, which is
discrete. We can find an orthonormal basis (ui)i∈I , with I containing the set N
of the natural numbers, such that Aun = εnun for n ∈ N, Aui = 0 for i /∈ N,
with the sequence of the εn > 0 converging to 0 as n → ∞ (it is a classical
result that these values, each counted with its order of multiplicity, form a finite
sequence, or an infinite sequence converging to 0; the finite case is excluded
since H1 is assumed to have infinite rank). We moreover have H1 =

√
A1K

(Corollary 5 of Proposition 21), such that an =
√
εnun form an orthonormal

basis of H1. We can likewise find an orthonormal basis (vi)i∈I of K , and a
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sequence ηn > 0 converging to 0 as n → ∞, such that bn =
√
ηnvn form an

orthonormal basis of H2.
Let us now construct a pre-Hilbert structure H on H1 + H2 as follows. It

will preserve the orthonormality of an, as well as that of bn; am and bn will be
orthogonal if m 6= n; and we let (an | bn) = 1− δn, 0 < δn < 1. Put differently,
for every point in H1 + H2 of the form

∞∑
n=0

(αnan + βnbn), with
∞∑
n=0

|αn|2 < +∞,
∞∑
n=0

|βn|2 < +∞,

we will let

(13.1)

∥∥∥∥∥∥
∞∑
n=0

(αnan + βnbn)

∥∥∥∥∥∥
2

H

=

∞∑
n=0

[
|αn|2 + |βn|2 + 2Re(1− δn)αnβ̄n

]
.

(The series on the right-hand side is indeed always convergent, and is indeed
non-negative by dint of the hypothesis 0 < δn < 1. Hence we do have a Hausdorff
pre-Hilbert structure on H ). This structure induces on H1 and H2 their initial
structures; moreover, if δn converge to 0 as n→∞, H1 and H2 are in position
(T) in H , since (an | bn)H = 1 − δn. It remains to show that we can choose
the sequence δn such that H is a pre-Hilbert subspace of E, i.e. such that its
unit ball B is bounded in E; then what came just before the statement of the
present Proposition will indeed show that the Hermitian subspace H1 −H2 of
E has multiplicity, which is the result we were after. It suffices to show that B is
weakly bounded. So let e′ be in E′. We have, for h =

∑∞
n=0(αnan+βnbn) ∈H :

(13.2) 〈h, e′〉 =

∞∑
n=0

(αn〈an, e′〉+ βn〈bn, e′〉).

Let m be a natural number such that εn < 1 and ηn < 1 for n > m.
The sum

∑
n5m

immediately admits the upper bound

(13.2b) |
∑
n5m

(αn〈an, e′〉+ βn〈bn, e′〉)| 5 Ae′‖
∑
n5m

(αnan + βnbn)‖H

because every linear form on a vector space of finite dimension is bounded above
by the norm, up to a factor. In addition,

‖
∑
n5m

‖H 5 ‖
∞∑
n=0

‖H = ‖h‖H ,

thence

(13.2c) |
∑
n5m

(αn〈an, e′〉+ βn〈bn, e′〉)| 5 Ae′‖h‖H .

Consider now
∑
n>m:∑
m

= |
∑
n>m

(αn〈an, e′〉+ βn〈bn, e′〉)|
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=
∑
n>m

(αn
√
εn〈un, e′〉+ βn

√
ηn〈vn, e′〉)|

5

∑
n>m

εn|αn|2
1/2∑

n>m

|〈un, e′〉|2
1/2

+

∑
n>m

ηn|βn|2
∑

n>m

|〈vn, e′〉|2
1/2

,(13.3)

by applying the Cauchy-Schwarz inequality here.
As the un and the vn are subsets of Hilbert bases of K , we have, by Corollary

5 of Proposition 19,

(13.4)

 ∞∑
n>m

|〈un, e′〉|2
1/2

5 Be′ ,

 ∞∑
n>m

|〈vn, e′〉|2
1/2

5 Be′ ,

where 0 5 Be′ < +∞ (where Be′ is dependent on e′). Then

∑
m

5 Be′


 ∞∑
n>m

εn|αn|2
1/2

+

 ∞∑
n>m

ηn|βn|2
1/2


5 2Be′

 ∞∑
n>m

(εn|αn|2 + ηn|βn|2)

1/2

.

Let us suppose that we can choose δn such that, for n > m:

(13.6) εn|αn|2 + ηn|βn|2 5 |αn|2 + |βn|2 + 2(1− δn)Re(αnβ̄n).

We will then have

(13.7) |〈h, e′〉| 5 Ce′‖h‖H , Ce′ = Ae′ + 2Be′ ,

and the unit ball B of H will indeed be weakly bounded, which will finish the
proof. But, (13.6) is equivalent to

(13.8) (1− εn)(αn)2 + (1− ηn)|βn|2 + 2(1− δn)Re(αnβ̄n) = 0.

As 1− εn > 0 and 1− ηn > 0 for n > m, (13.8) is equivalent to:

(13.9) (1− εn)(1− ηn)− (1− δn)2 > 0.

It will thus suffice to choose δn arbitrary for n 5 m (0 < δn < 1), and for n > m:

(13.10) 1− δn =
√

(1− εn)(1− ηn)

(
1− 1

n

)
.

We then indeed have 0 < 1− δn < 1, so 0 < δn < 1, and

1− δn → 1 as n→∞, so δn → 0.
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Corollary 1. Let E be a locally convex, quasi-complete Hausdorff topological
vector space, with the following property: for every Hilbert subspace H of E,
there exists another Hilbert subspace K such that the inclusion of H in K is
compact. Then, a Hermitian kernel of E that is a difference H1 − H2 of two
non-negative alien kernels, has unicity if and only if H1 and H2 are of finite
rank.

This follows trivially from Propositions 40 and 41.

Corollary 2. Let E be the dual of a barrelled nuclear space. A Hermitian
kernel H of E that is a difference H1 − H2 of two non-negative alien kernels,
has unicity if and only if H1 and H2 are of finite rank.

Proof. We have E = F ′, where F is barrelled and nuclear, and so reflexive;
Ē′ = F . Let H be a Hilbert subspace of E. By taking the adjoint of the
inclusion H → E, we have a continuous linear map Ē′ → H (where H is
identified with H̄ ′). But we know that every continuous linear map from a
nuclear space F = Ē′ into a Banach space factorises into a product of nuclear
operators. There exist Banach spaces A and B such that Ē′ → H factorises
into Ē′ → A → B →H , with all these maps being nuclear. But every nuclear
map from a Banach space into another factorises into a product of continuous
maps, with a Hilbert intermediate space; so there exists a factorisation of A →
B into A → K1 → B, where the maps are continuous and linear, and K1 is
a Hilbert space. We thus have Ē′ → K1 → H , where K1 → H is nuclear
and so compact. By taking the adjoint, the inclusion H → E factorises into
H → K1 → E, where H → K1 is compact. If H is the image of K1 in E, with
the image Hilbert structure, we have the factorisation H → K1 → K → E,
so H → K → E, where H → K is compact; K → E and H → E are
inclusions, and so is H → K ; put differently, K is a Hilbert subspace of E
and H ⊂ K , such that the inclusion H → K is compact. It then suffices to
apply Corollary 1.

Example. E = D ,D ′,E ,E ′,S ,S ′,OM ,O ′M ,C ,O
′
C
(60).

Let us now suppose that Ē′ is a subspace of E, in the setting of §11. Let
H be a normal Hermitian subspace of E. Its anti-dual H̄ ′ is then a normal
Hermitian subspace of E, if we transport the Hermitian structure of H onto
H̄ ′ via the isomorphism γ. Proposition 28b then remains valid. On the other
hand, there does not seem to be an equivalent of Propositions 29 and 30.

If the kernel H of H is extendable, it is necessary, for H to be normal, that
H has a Hermitian inverse, since the kernel H̄ ′ of H̄ ′ is Hermitian; but this
has no reason to be sufficient. (If, by the way, H has some bilateral inverse L,
it also has a Hermitian inverse (L + L∗)/2). It would be interesting to extend
potential theory and the Dirichlet problem to Hermitian differential operators
as they were presented in §11.

Index of Definitions and Notations

Pre-Hilbert or Hilbert subspace of a topological vector space, page 6.
(60)All these spaces are barrelled, nuclear and reflexive, hence so are their duals. See, for
example, Schwartz [1], Chapters 3 and 7, and Grothendieck [1], Chapter II, §2, no3, page 54.
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Antilinear map, anti-isomorphism, footnote (1), page 3.
Conjugate space Ē, page 3.
Dual, anti-dual, transpose, contragredient, pages 3-4.
Sesquilinear map, footnote (5), page 4.
Conjugate, Adjoint of a map tu, u∗, page 5.
Quasi-complete space, footnote (6), page 6.
Weak topology σ(E,E′), footnote (7), page 7.
Completion of a pre-Hilbert subspace, page 10; Q-completion, page 11.
Operations on Hilbert subspaces; multiplication by scalars, page 12, addition
page 12, order relation page 15.
Salient convex cone, page 16.
Kernel, page 17; associated or reproducing kernel, page 19.
Image of a Hilbert space under a map, u(H ), page 41.
Normal space, page 65.
Admissible pre-Hermitian space, page 82; Hermitian space, page 88; Hermitian
subspace, page 89.
Kernel with unicity, page 89.
E′∗, page 7.
H s, page 8; Λ2(X,µ), page 9.
Hilb(E), page 12; Herm(E), page 85; functor Hilb, page 50.
L +(E), page 18; L h(E), page 86; functor L +, page 50.
Aronszajn’s kernel, A(x, ξ), page 51.
H and H̃, page 17.
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